Extensional Crisis and Proving Identity

Ashutosh Gupta Laura Kovács <u>Bernhard Kragl</u> Andrei Voronkov

Theories + Quantifiers

- Applications require theories and quantifiers
- Example: verification of sorting algorithm
 - Sortedness

$$\forall i \forall j \ (i \leq j \rightarrow OUT[i] \leq OUT[j])$$

– Value preservation

 $\forall i \exists j (IN[i] = OUT[j]) \\ \forall i \exists j (OUT[i] = IN[j])$

• Major challenge in automated reasoning

Efforts to combine both techniques:

E-matching [DNS,J.ACM'05][R,LPAR'12] Array fragments [BMS,VMCAI'06][HIV,FoSSaCS'08] Model based quantifier instantiation [GdM,CAV'09] Hierarchic Superposition [BGW,AAECC'94][BW,CADE'13] Instantiation-based TP [GK,LICS'03][GK,LPAR'06]

•••

• • •

Efforts to combine both techniques:

E-matching [DNS,J.ACM'05][R,LPAR'12] Array fragments [BMS,VMCAI'06][HIV,FoSSaCS'08] Model based quantifier instantiation [GdM,CAV'09] Hierarchic Superposition [BGW,AAECC'94][BW,CADE'13] Instantiation-based TP [GK,LICS'03][GK,LPAR'06]

Contribution

- 1. Observation: state-of-the-art theorem provers can not handle problems with extensionality axioms
- 2. Solution: new inference rule extensionality resolution

3. Implementation in the Vampire theorem prover

First-Order Theorem Proving

ATP Research

Intuition

"Generally" pick *"small"* clauses, select only *"most complex"* literals in picked clause and candidate clauses, and *"simplify"* them.

Intuition

"Generally" pick *"small"* clauses, select only *"most complex"* literals in picked clause and candidate clauses,

and "simplify" them.

Formal concepts

Fair inference process Simplification ordering (e.g. KBO) Literal selection

Constraints on inference rules

Intuition

"Generally" pick *"small"* clauses, select only *"most complex"* literals in picked clause and candidate clauses,

and *"simplify"* them.

Formal concepts

Fair inference process Simplification ordering (e.g. KBO) Literal selection

rep

les

Not always optimal, e.g. for theories with extensionality!

Cons

Extensionality

- An extensionality axiom defines the meaning of equality for certain objects
- Examples
 - Set Extensionality Axiom $\forall X \forall Y \ (\forall e \ (e \in X \leftrightarrow e \in Y) \rightarrow X = Y)$

- Array Extensionality Axiom $\forall X \forall Y \ (\forall i \ (X[i] = Y[i]) \rightarrow X = Y)$

Reasoning with Extensionality

Prove: $\forall X \forall Y \ (X \cup Y = Y \cup X)$

Take two arbitrary sets *a* and *b*.

By extensionality, show for arbitrary element e: $e \in a \cup b \leftrightarrow e \in b \cup a$

• Assume $e \in a \cup b$, then $e \in a$ or $e \in b$,

(def. of U)

and in both cases $e \in b \cup a$.

(commut. of "or") (def. of U)

• Assume $e \in b \cup a$; symmetric.

Almost trivial, but ...

Extensional Crisis

... hard for FO theorem provers.

Top provers from CASC-24 competition last year:

 $X \cup Y = Y \cup X$ all tools timeout (1 minute)

 $X \cap Y \subseteq Z \subseteq X \cup Y \to (X \cup Y) \cap (\overline{X} \cup Z) = Y \cup Z$ all tools timeout (1 hour)

Extensionality axioms as clauses

Extensionality axioms as clauses

Set: $\forall X \forall Y \ (\forall e \ (e \in X \leftrightarrow e \in Y) \rightarrow X = Y)$ $f(x, y) \notin x \lor f(x, y) \notin y \lor x = y$

Extensionality axioms as clauses
Array: x[g(x, y)] ≠ y[g(x, y)] ∨ x = y
Set: f(x, y) ∉ x ∨ f(x, y) ∉ y ∨ x = y

Extensionality axioms as clauses
Array: x[g(x, y)] ≠ y[g(x, y)] ∨ x = y
Set: f(x, y) ∉ x ∨ f(x, y) ∉ y ∨ x = y

- Extensionality axioms as clauses Array: $x[g(x, y)] \neq y[g(x, y)] \lor x = y$ Set: $f(x, y) \notin x \lor f(x, y) \notin y \lor x = y$
- x = y is always the smallest literal → will not be selected

- Extensionality axioms as clauses Array: $x[g(x, y)] \neq y[g(x, y)] \lor x = y$ Set: $f(x, y) \notin x \lor f(x, y) \notin y \lor x = y$
- x = y is always the smallest literal → will not be selected
- Prover searches in the wrong direction

Why do all top provers

Extensionality axioms as clauses
Array: x[g(x, y)] ≠ y[g(x, y)] ∨ x = y
Set: f(x, y) ∉ x ∨ f(x, y) ∉ y ∨ x = y

Just select

x = y !?!

- x = y is always the smallest literal → will not be selected
- Prover searches in the wrong direction

OUR SOLUTION

Extensionality resolution inference rule

Extensionality axiom $\vee C$ $s \neq t \vee D$ x =

Selected inequality

OUR SOLUTION

Extensionality resolution inference rule

OUR SOLUTION

Extensionality resolution inference rule

Example:

$$x = y \lor f(x, y) \notin x \lor f(x, y) \notin y \qquad \underline{a \cup b} \neq b \cup a$$

 $f(a \cup b, b \cup a) \notin a \cup b \lor f(a \cup b, b \cup a) \notin b \cup a$

- + Straight forward to implement
- + No special index structures required
- + No changes to the underlying inference mechanism

• The Good,

- Known extensionality axioms (set, array, subset, ...)

- The Good,
 - Known extensionality axioms (set, array, subset, ...)
- the Bad,
 - Constructor axioms

$$f(x) \neq f(y) \lor x = y$$

- The Good,
 - Known extensionality axioms (set, array, subset, ...)
- the Bad,
 - Constructor axioms

 $f(x) \neq f(y) \lor x = y$

• and the Ugly?

 $\begin{aligned} x_4 &= x_6 \lor ssSkC0 \lor \neg in(x_6, x_7) \lor \neg front(x_7) \lor \neg furniture(x_7) \lor \neg seat(x_7) \lor \\ \neg fellow(x_6) \lor \neg man(x_6) \lor \neg young(x_6) \lor \neg seat(x_5) \lor \neg furniture(x_5) \lor \neg front(x_5) \lor \\ \neg in(x_4, x_5) \lor \neg young(x_4) \lor \neg man(x_4) \lor \neg fellow(x_4) \lor \neg in(x_2, x_3) \lor \neg city(x_3) \lor \\ \neg hollywood(x_3) \lor \neg event(x_2) \lor \neg barrel(x_2, x_1) \lor \neg down(x_2, x_0) \lor \neg old(x_1) \lor \\ \neg dirty(x_1) \lor \neg white(x_1) \lor \neg car(x_1) \lor \neg chevy(x_1) \lor \neg street(x_0) \lor \neg way(x_0) \lor \\ \neg lonely(x_0). \end{aligned}$

Implementation and Evaluation

- Implementation VAMPIRE^{EX}
 - extension of the VAMPIRE theorem prover
 - ca. 1,000 lines of code

- Benchmark suits
 - Handcrafted set theory problems
 - SMT-LIB array problems
 - TPTP library

Set Theory Experiments

- 36 handcrafted problems
- VAMPIRE^{EX} solves all problems very fast
 - > 0.1 s: 5
 - > 1 s: 2
- 17 problems only solved by VAMPIRE^{EX}

#	VAMPIRE ^{ex}	IPROVER	PRINCESS	VAMPIRE	CVC4	Ш	MUSCADET	ZIPPER- POSITION	BEAGLE	E-KR- Hyper
1	0.02	13.70	7.78				0.10			
2	0.01		7.92		41.54					
3	0.06									
4	0.02	1.47	9.36	0.21	30.24	1.38	0.65			
5	0.02	0.89	17.19	1.92	56.05	33.98	0.10			
6	0.02	0.29	15.41		54.40					
7	0.03									
8	0.02									
9	0.02									
10	0.04									
11	0.04									
12	0.02	0.58	15.36	0.39	50.52					
13	0.02	1.10	15.23	0.14	30.34	0.35	0.09			
14	0.02	2.44	7.80	0.02		0.07	0.09	10.59	6.85	
15	0.02	13.80	8.55	0.12	32.15	1.55				
16	3.41									
17	0.01			0.02	30.94	24.31		0.44		
18	0.94									
19	0.03									
20	0.02									
21	0.03									
22	1.73									
23	0.24									
24	0.15			0.43						
25	0.05									
26	0.05									
27	0.03	11.80	25.80			52.47				
28	0.06	11.80	33.73	0.80	34.32					
29	0.03	38.63		0.22	31.33	1.64				
30	0.02	3.32	12.36	0.06		27.54	0.11	23.30		
31	0.03									
32	0.04									
33	0.02	23.28	20.92							
34	0.02	0.50	6.71	0.02	30.29	0.03	0.08	0.59	2.22	
35	0.02	8.23	6.87	0.23	30.34	30.23				
36	0.02	1.50		20.86	44.77					
	36	16	15	14	13	11	7	4	2	0

Array Experiments

278 problems from the QF_AX category of SMT-LIB

Prover	solved	runtime	
VAMPIRE ^{EX}	193	2,255.06	
VAMPIRE	110	2,272.17	
E	81	600.01	
BEAGLE	16	185.44	
ZIPPERPOSITION	15	49.27	
PRINCESS	10	35.02	
IPROVER	9	47.13	
CVC4	8	0.36	
E-KRHyper	8	1.26	
MUSCADET	4	0.41	

Number of solved problems increased from 39.57% to 69.42%.

TPTP Library Experiments

- 7033 problems with potential extensionality axioms
- VAMPIRE^{EX} solves 84 new problems

12 of them have CASC rating 1

Never solved

before

Prover	solved	uniquely solved
Vampire	4015	156
Vampire ^{ex}	3870	84

• Strategy scheduling Value of a new technique lies in its complementary impact

Options in Vampire

age_weight_ratio aig bdd sweeping aig conditional rewriting aig definition introduction aig_definition_introduction_threshold aig_formula_sharing aig inliner arity check backward demodulation backward_subsumption backward subsumption resolution bfnt binary resolution bp add collapsing inequalities bp allowed fm balance bp_almost_half_bounding_removal bp assignment selector bp bound improvement limit bp conflict selector bp_conservative_assignment_selection bp fm elimination bp max prop length bp propagate after conflict bp start with precise bp_start_with_rational bp variable selector color unblocking condensation decode demodulation redundancy check distinct_processor epr preserving naming epr preserving skolemization epr restoring inlining equality_propagation equality_proxy equality resolution with deletion extensionality allow pos eq extensionality max length extensionality_resolution flatten top level conjunctions forbidden_options forced options forward demodulation

forward literal rewriting

forward subsumption forward subsumption resolution function definition elimination function number general_splitting global subsumption horn revealing hyper superposition ignore missing include increased numeral weight inequality splitting input file input syntax inst_gen_big_restart_ratio inst_gen_inprocessing inst gen passive reactivation inst gen resolution ratio inst gen restart period inst_gen_restart_period_quotient inst_gen_selection inst gen with resolution interpreted simplification latex output lingva_additional_invariants literal comparison mode log file Irs first time check Irs weight limit only max_active max_answers max_inference_depth max passive max weight memory_limit mode name prefix naming niceness option nongoal_weight_coefficient nonliterals in clause weight normalize output axiom names predicate definition inlining predicate definition merging

predicate_equivalence_discovery predicate equivalence discovery add implicati show theory axioms ons predicate equivalence_discovery_random_sim sine_depth ulation predicate equivalence_discovery_sat_conflict_l imit predicate_index_introduction print clausifier premises problem name proof proof checking protected prefix question answering random seed row_variable_max_length sat_clause_activity_decay sat clause disposer sat learnt minimization sat learnt subsumption resolution sat lingeling incremental sat_lingeling_similar_models sat restart fixed count sat restart geometric increase sat restart geometric init sat_restart_luby_factor sat_restart_minisat_increase sat restart minisat init sat restart strategy sat solver sat var activity decay sat_var_selector saturation_algorithm selection show active show blocked show_definitions show interpolant show new show new propositional show nonconstant skolem function trace show options show passive show preprocessing show skolemisations

show_symbol_elimination simulated time limit sine_generality_threshold sine selection sine tolerance smtlib consider ints real smtlib flet as definition smtlib_introduce_aig_names SOS split at activation splitting ssplitting add complementary ssplitting_component_sweeping ssplitting congruence closure ssplitting eager removal ssplitting flush period ssplitting flush quotient ssplitting_nonsplittable_components statistics superposition from variables symbol_precedence tabulation by rule subsumption resolution b y lemmas tabulation fw rule subsumption resolution b y lemmas tabulation goal awr tabulation goal lemma ratio tabulation_instantiate_producing_rules tabulation_lemma_awr test id thanks theory_axioms time_limit time statistics trivial predicate removal unit resulting resolution unused predicate definition removal use dismatching weight_increment while number xml output

Conclusion

- Extensional crisis in the life of theorem provers
- Extensionality resolution: the right medication to overcome the crisis
- Future
 - Strategy synthesis
 - Combination of theories (esp. arithmetic)