
Extensional Crisis
and Proving Identity

Ashutosh Gupta
Laura Kovács

Bernhard Kragl
Andrei Voronkov

Theories + Quantifiers

• Applications require theories and quantifiers

• Example: verification of sorting algorithm

– Sortedness
∀𝑖∀𝑗 𝑖 ≤ 𝑗 → 𝑂𝑈𝑇 𝑖 ≤ 𝑂𝑈𝑇 𝑗

– Value preservation
∀𝑖∃𝑗 𝐼𝑁 𝑖 = 𝑂𝑈𝑇 𝑗
∀𝑖∃𝑗 𝑂𝑈𝑇 𝑖 = 𝐼𝑁 𝑗

• Major challenge in automated reasoning

Efforts to combine both techniques:
E-matching [DNS,J.ACM’05][R,LPAR’12]
Array fragments [BMS,VMCAI’06][HIV,FoSSaCS’08]
Model based quantifier instantiation [GdM,CAV’09]

Hierarchic Superposition [BGW,AAECC‘94][BW,CADE‘13]
Instantiation-based TP [GK,LICS’03][GK,LPAR’06]
…

Efforts to combine both techniques:
E-matching [DNS,J.ACM’05][R,LPAR’12]
Array fragments [BMS,VMCAI’06][HIV,FoSSaCS’08]
Model based quantifier instantiation [GdM,CAV’09]

Hierarchic Superposition [BGW,AAECC‘94][BW,CADE‘13]
Instantiation-based TP [GK,LICS’03][GK,LPAR’06]
…

Contribution

1. Observation: state-of-the-art theorem provers can
not handle problems with extensionality axioms

2. Solution: new inference rule extensionality
resolution

3. Implementation in the Vampire theorem prover

First-Order Theorem Proving

Set of
clauses

Proof
(of unsat)

Theorem
Prover

Input Output

𝐴 → 𝐵 valid

𝐴 ⊨ 𝐵

𝐴 ∧ ¬𝐵 unsat

Questions

Superposition Theorem Proving

input clauses

Superposition calculus + Saturation Algorithm

Superposition Theorem Proving

input clauses

Superposition calculus + Saturation Algorithm

1. pick clause

Superposition Theorem Proving

input clauses

Superposition calculus + Saturation Algorithm

1. pick clause

2. find candidates search space

Superposition Theorem Proving

input clauses

Superposition calculus + Saturation Algorithm

1. pick clause

2. find candidates

3. perform inferences

search space

Superposition Theorem Proving

input clauses

Superposition calculus + Saturation Algorithm

1. pick clause

2. find candidates

3. perform inferences

search space

Superposition Theorem Proving

input clauses

Superposition calculus + Saturation Algorithm

1. pick clause

2. find candidates

3. perform inferences

P(X) ∨ Q(X)

search space

¬P(a) ∨ f(b) = b

Q(a) ∨ f(b) = b

Superposition Theorem Proving

input clauses

Superposition calculus + Saturation Algorithm

search space

Superposition Theorem Proving

input clauses

Superposition calculus + Saturation Algorithm

1. pick clause

search space

Superposition Theorem Proving

input clauses

Superposition calculus + Saturation Algorithm

1. pick clause

2. find candidates

search space

Superposition Theorem Proving

input clauses

Superposition calculus + Saturation Algorithm

1. pick clause

2. find candidates

3. perform inferences

search space

Superposition Theorem Proving

input clauses

Superposition calculus + Saturation Algorithm

false
1. pick clause

2. find candidates

3. perform inferences

search space

Superposition Theorem Proving

input clauses

Superposition calculus + Saturation Algorithm

1. pick clause

2. find candidates

3. perform inferences

search space

Superposition Theorem Proving

input clauses

Superposition calculus + Saturation Algorithm

1. pick clause

2. find candidates

3. perform inferences

search space

Superposition Theorem Proving

Superposition calculus + Saturation Algorithm

Superposition Theorem Proving

Superposition calculus + Saturation Algorithm

Memory

ATP Research

How to organize proof search?

How to organize proof search?

Intuition

“Generally”

pick “small” clauses,

select only “most complex”
literals in picked clause and
candidate clauses,

and “simplify” them.

How to organize proof search?

Intuition

“Generally”

pick “small” clauses,

select only “most complex”
literals in picked clause and
candidate clauses,

and “simplify” them.

Formal concepts

Fair inference process

Simplification ordering (e.g. KBO)

Literal selection

Constraints on inference rules

How to organize proof search?

Intuition

“Generally”

pick “small” clauses,

select only “most complex”
literals in picked clause and
candidate clauses,

and “simplify” them.

Formal concepts

Fair inference process

Simplification ordering (e.g. KBO)

Literal selection

Constraints on inference rules

Not always optimal,
e.g. for theories

with extensionality!

Extensionality

• An extensionality axiom defines the meaning
of equality for certain objects

• Examples

– Set Extensionality Axiom

∀𝑋∀𝑌 ∀𝑒 𝑒 ∈ 𝑋 ↔ 𝑒 ∈ 𝑌 → 𝑋 = 𝑌

– Array Extensionality Axiom

∀𝑋∀𝑌 ∀𝑖 𝑋 𝑖 = 𝑌[𝑖] → 𝑋 = 𝑌

Reasoning with Extensionality

Prove: ∀𝑋∀𝑌 (𝑋 ∪ 𝑌 = 𝑌 ∪ 𝑋)

Take two arbitrary sets 𝑎 and 𝑏.

By extensionality, show for arbitrary element 𝑒:
𝑒 ∈ 𝑎 ∪ 𝑏 ↔ 𝑒 ∈ 𝑏 ∪ 𝑎

• Assume 𝑒 ∈ 𝑎 ∪ 𝑏,

then 𝑒 ∈ 𝑎 or 𝑒 ∈ 𝑏, (def. of ∪)

and in both cases 𝑒 ∈ 𝑏 ∪ 𝑎. (commut. of “or”) (def. of ∪)

• Assume 𝑒 ∈ 𝑏 ∪ 𝑎; symmetric.

Almost trivial, but …

Extensional Crisis

… hard for FO theorem provers.

Top provers from CASC-24 competition last year:

𝑋 ∪ 𝑌 = 𝑌 ∪ 𝑋

all tools timeout (1 minute)

𝑋 ∩ 𝑌 ⊆ 𝑍 ⊆ 𝑋 ∪ 𝑌 → 𝑋 ∪ 𝑌 ∩ 𝑋 ∪ 𝑍 = 𝑌 ∪ 𝑍

all tools timeout (1 hour)

Why do all top provers fail?

Extensionality axioms as clauses

Array: ∀𝑋∀𝑌 ∀𝑖 𝑋 𝑖 = 𝑌[𝑖] → 𝑋 = 𝑌
𝑥 𝑔 𝑥, 𝑦 ≠ 𝑦 𝑔 𝑥, 𝑦 ∨ 𝑥 = 𝑦

Why do all top provers fail?

Clause
form

Extensionality axioms as clauses

Array: ∀𝑋∀𝑌 ∀𝑖 𝑋 𝑖 = 𝑌[𝑖] → 𝑋 = 𝑌
𝑥 𝑔 𝑥, 𝑦 ≠ 𝑦 𝑔 𝑥, 𝑦 ∨ 𝑥 = 𝑦

Set: ∀𝑋∀𝑌 ∀𝑒 𝑒 ∈ 𝑋 ↔ 𝑒 ∈ 𝑌 → 𝑋 = 𝑌
𝑓 𝑥, 𝑦 ∉ 𝑥 ∨ 𝑓 𝑥, 𝑦 ∉ 𝑦 ∨ 𝑥 = 𝑦

Why do all top provers fail?

Clause
form

• Extensionality axioms as clauses
Array: 𝑥 𝑔 𝑥, 𝑦 ≠ 𝑦 𝑔 𝑥, 𝑦 ∨ 𝑥 = 𝑦
Set: 𝑓 𝑥, 𝑦 ∉ 𝑥 ∨ 𝑓 𝑥, 𝑦 ∉ 𝑦 ∨ 𝑥 = 𝑦

Why do all top provers fail?

• Extensionality axioms as clauses
Array: 𝑥 𝑔 𝑥, 𝑦 ≠ 𝑦 𝑔 𝑥, 𝑦 ∨ 𝑥 = 𝑦
Set: 𝑓 𝑥, 𝑦 ∉ 𝑥 ∨ 𝑓 𝑥, 𝑦 ∉ 𝑦 ∨ 𝑥 = 𝑦

Why do all top provers fail?

• Extensionality axioms as clauses
Array: 𝑥 𝑔 𝑥, 𝑦 ≠ 𝑦 𝑔 𝑥, 𝑦 ∨ 𝑥 = 𝑦
Set: 𝑓 𝑥, 𝑦 ∉ 𝑥 ∨ 𝑓 𝑥, 𝑦 ∉ 𝑦 ∨ 𝑥 = 𝑦

• 𝑥 = 𝑦 is always the smallest literal  will not
be selected

Why do all top provers fail?

• Extensionality axioms as clauses
Array: 𝑥 𝑔 𝑥, 𝑦 ≠ 𝑦 𝑔 𝑥, 𝑦 ∨ 𝑥 = 𝑦
Set: 𝑓 𝑥, 𝑦 ∉ 𝑥 ∨ 𝑓 𝑥, 𝑦 ∉ 𝑦 ∨ 𝑥 = 𝑦

• 𝑥 = 𝑦 is always the smallest literal  will not
be selected

• Prover searches in the wrong direction

Why do all top provers fail?

• Extensionality axioms as clauses
Array: 𝑥 𝑔 𝑥, 𝑦 ≠ 𝑦 𝑔 𝑥, 𝑦 ∨ 𝑥 = 𝑦
Set: 𝑓 𝑥, 𝑦 ∉ 𝑥 ∨ 𝑓 𝑥, 𝑦 ∉ 𝑦 ∨ 𝑥 = 𝑦

• 𝑥 = 𝑦 is always the smallest literal  will not
be selected

• Prover searches in the wrong direction

Why do all top provers fail?
Just select
𝑥 = 𝑦 !?!

OUR SOLUTION

Extensionality resolution inference rule

Extensionality axiom Selected inequality

OUR SOLUTION

Extensionality resolution inference rule

𝜃 = {𝑥 ↦ 𝑠, 𝑦 ↦ 𝑡}

Extensionality axiom Selected inequality

OUR SOLUTION

Extensionality resolution inference rule

𝜃 = {𝑥 ↦ 𝑠, 𝑦 ↦ 𝑡}

𝑥 = 𝑦 ∨ 𝑓 𝑥, 𝑦 ∉ 𝑥 ∨ 𝑓 𝑥, 𝑦 ∉ 𝑦 𝑎 ∪ 𝑏 ≠ 𝑏 ∪ 𝑎

𝑓 𝑎 ∪ 𝑏, 𝑏 ∪ 𝑎 ∉ 𝑎 ∪ 𝑏 ∨ 𝑓 𝑎 ∪ 𝑏, 𝑏 ∪ 𝑎 ∉ 𝑏 ∪ 𝑎

Extensionality axiom Selected inequality

Example:

Integration into saturation algorithms

Extensionality resolutionSuper-
position

Reso-
lution

.

Search
space

Integration into saturation algorithms

Extensionality
axiom?

Selected
inequality

literal?

Extensionality
store

Selected
inequality

store

Extensionality resolutionSuper-
position

Reso-
lution

.

Search
space

Integration into saturation algorithms

Extensionality
axiom?

Selected
inequality

literal?

Extensionality
store

Selected
inequality

store

Extensionality resolutionSuper-
position

Reso-
lution

.

Search
space

Integration into saturation algorithms

Extensionality
axiom?

Selected
inequality

literal?

Extensionality
store

Selected
inequality

store

Extensionality resolutionSuper-
position

Reso-
lution

.

Search
space

Integration into saturation algorithms

Extensionality
axiom?

Selected
inequality

literal?

Extensionality
store

Selected
inequality

store

Extensionality resolutionSuper-
position

Reso-
lution

.

Search
space

+ Straight forward to implement
+ No special index structures required
+ No changes to the underlying inference mechanism

Recognition of extensionality axioms

Recognition of extensionality axioms

• The Good,
– Known extensionality axioms (set, array, subset, …)

• the Bad,
– Constructor axioms

𝑓 𝑥 ≠ 𝑓 𝑦 ∨ 𝑥 = 𝑦

• and the Ugly?

Recognition of extensionality axioms

• The Good,
– Known extensionality axioms (set, array, subset, …)

• the Bad,
– Constructor axioms

𝑓 𝑥 ≠ 𝑓 𝑦 ∨ 𝑥 = 𝑦

• and the Ugly?

Recognition of extensionality axioms

• The Good,
– Known extensionality axioms (set, array, subset, …)

• the Bad,
– Constructor axioms

𝑓 𝑥 ≠ 𝑓 𝑦 ∨ 𝑥 = 𝑦

• and the Ugly?

Implementation and Evaluation

• Implementation VAMPIREEX

– extension of the VAMPIRE theorem prover

– ca. 1,000 lines of code

• Benchmark suits

– Handcrafted set theory problems

– SMT-LIB array problems

– TPTP library

Set Theory
Experiments

• 36 handcrafted problems

• VAMPIREEX solves all
problems very fast

• > 0.1 s: 5

• > 1 s: 2

• 17 problems only solved
by VAMPIREEX

Array Experiments

278 problems from the QF_AX category of SMT-LIB

Number of solved problems increased from 39.57% to 69.42%.

TPTP Library Experiments

• 7033 problems with potential extensionality axioms

• VAMPIREEX solves 84 new problems
12 of them have CASC rating 1

• Strategy scheduling
Value of a new technique lies in its complementary impact

Prover solved uniquely solved

VAMPIRE 4015 156

VAMPIREEX 3870 84

Never solved
before

Options in Vampire
age_weight_ratio
aig_bdd_sweeping
aig_conditional_rewriting
aig_definition_introduction
aig_definition_introduction_threshold
aig_formula_sharing
aig_inliner
arity_check
backward_demodulation
backward_subsumption
backward_subsumption_resolution
bfnt
binary_resolution
bp_add_collapsing_inequalities
bp_allowed_fm_balance
bp_almost_half_bounding_removal
bp_assignment_selector
bp_bound_improvement_limit
bp_conflict_selector
bp_conservative_assignment_selection
bp_fm_elimination
bp_max_prop_length
bp_propagate_after_conflict
bp_start_with_precise
bp_start_with_rational
bp_variable_selector
color_unblocking
condensation
decode
demodulation_redundancy_check
distinct_processor
epr_preserving_naming
epr_preserving_skolemization
epr_restoring_inlining
equality_propagation
equality_proxy
equality_resolution_with_deletion
extensionality_allow_pos_eq
extensionality_max_length
extensionality_resolution
flatten_top_level_conjunctions
forbidden_options
forced_options
forward_demodulation
forward_literal_rewriting

forward_subsumption
forward_subsumption_resolution
function_definition_elimination
function_number
general_splitting
global_subsumption
horn_revealing
hyper_superposition
ignore_missing
include
increased_numeral_weight
inequality_splitting
input_file
input_syntax
inst_gen_big_restart_ratio
inst_gen_inprocessing
inst_gen_passive_reactivation
inst_gen_resolution_ratio
inst_gen_restart_period
inst_gen_restart_period_quotient
inst_gen_selection
inst_gen_with_resolution
interpreted_simplification
latex_output
lingva_additional_invariants
literal_comparison_mode
log_file
lrs_first_time_check
lrs_weight_limit_only
max_active
max_answers
max_inference_depth
max_passive
max_weight
memory_limit
mode
name_prefix
naming
niceness_option
nongoal_weight_coefficient
nonliterals_in_clause_weight
normalize
output_axiom_names
predicate_definition_inlining
predicate_definition_merging

predicate_equivalence_discovery
predicate_equivalence_discovery_add_implicati
ons
predicate_equivalence_discovery_random_sim
ulation
predicate_equivalence_discovery_sat_conflict_l
imit
predicate_index_introduction
print_clausifier_premises
problem_name
proof
proof_checking
protected_prefix
question_answering
random_seed
row_variable_max_length
sat_clause_activity_decay
sat_clause_disposer
sat_learnt_minimization
sat_learnt_subsumption_resolution
sat_lingeling_incremental
sat_lingeling_similar_models
sat_restart_fixed_count
sat_restart_geometric_increase
sat_restart_geometric_init
sat_restart_luby_factor
sat_restart_minisat_increase
sat_restart_minisat_init
sat_restart_strategy
sat_solver
sat_var_activity_decay
sat_var_selector
saturation_algorithm
selection
show_active
show_blocked
show_definitions
show_interpolant
show_new
show_new_propositional
show_nonconstant_skolem_function_trace
show_options
show_passive
show_preprocessing
show_skolemisations

show_symbol_elimination
show_theory_axioms
simulated_time_limit
sine_depth
sine_generality_threshold
sine_selection
sine_tolerance
smtlib_consider_ints_real
smtlib_flet_as_definition
smtlib_introduce_aig_names
sos
split_at_activation
splitting
ssplitting_add_complementary
ssplitting_component_sweeping
ssplitting_congruence_closure
ssplitting_eager_removal
ssplitting_flush_period
ssplitting_flush_quotient
ssplitting_nonsplittable_components
statistics
superposition_from_variables
symbol_precedence
tabulation_bw_rule_subsumption_resolution_b
y_lemmas
tabulation_fw_rule_subsumption_resolution_b
y_lemmas
tabulation_goal_awr
tabulation_goal_lemma_ratio
tabulation_instantiate_producing_rules
tabulation_lemma_awr
test_id
thanks
theory_axioms
time_limit
time_statistics
trivial_predicate_removal
unit_resulting_resolution
unused_predicate_definition_removal
use_dismatching
weight_increment
while_number
xml_output

Conclusion

• Extensional crisis in the life of theorem
provers

• Extensionality resolution: the right medication
to overcome the crisis

• Future

– Strategy synthesis

– Combination of theories (esp. arithmetic)

