Monitoring Event Frequencies

Bernhard Kragl IST Austria

Thomas Ferrère Thomas

Thomas A. Henzinger

Monitoring

aka Runtime Verification

Performance Monitoring

Quantitative system properties "Soft" performance indicators

Problem Setting

Example Statistics

 Mode (most frequent value) mode : $\Sigma^* \to \Sigma \cup \{\bot\}$ mode(w) = a if $|w|_a > |w|_{\sigma}$ for all $\sigma \neq a$ # of occurrences of letter σ in word w Median ("middle" value) median : $\Sigma^* \rightarrow \Sigma \cup \{\bot\}$ median(w) = a if $\sum_{\sigma > a} |w|_{\sigma} < \sum_{\sigma \le a} |w|_{\sigma}$ $\sum_{\sigma \le a} |w|_{\sigma} < \sum_{\sigma \ge a} |w|_{\sigma}$

Example Statistics

• Mode (most frequent value)

mode(abca) = a

• Median ("middle" value)

median(abbcdef) = c

Problem Setting

The Monitoring Problem

- Real-Time Monitoring (the past) Monitor A is a *real-time monitor* of statistic μ: [[A]] = μ
- Limit Monitoring (the future)

Statistic μ converges to value v over random process $\mathcal{P}(\mu(\mathcal{P}) = v)$: $\mathbb{P}_{w\sim \mathcal{P}}(\lim_{n \to \infty} \mu(w_{1..n}) = v) = 1$

Monitor \mathcal{A} is a *limit monitor* of statistic μ over random processes \mathcal{P} : $\llbracket \mathcal{A} \rrbracket (\mathcal{P}) = v \iff \mu(\mathcal{P}) = v$

Precise Real-Time Monitoring

• Mode

Naïve algorithm: one counter c_{σ} for every letter σ

IPv4 protocol: 4,294,967,296 addresses

UTF-8 encoding: 1,112,064 code points

- Median
 - Offline: selection, median of means (approximate),
 Mitzenmacher & Upfal (randomized)
 - Online: two heaps for lower and higher halve of values
 - Real-time: no known algorithm

Precise Real-Time Monitoring is Expensive

• Equivalence relation \equiv_{μ} over words

 $w \equiv_{\mu} w'$ if $\mu(wu) = \mu(w'u)$ for all words u

• Σ -counting statistic μ

$$w \equiv_{\mu} w' \;\; \Rightarrow \;\; \exists n \in \mathbb{Z} \; \forall \sigma \in \Sigma : |w|_{\sigma} = |w'|_{\sigma} + n$$

$$aabc \equiv_{mode} a$$
over $\Sigma = \{a, b, c\}$ distances: 1 $aabc \not\equiv_{mode} a$ over $\Sigma = \{a, b, c, d\}$ distances: 1, 0

Precise Real-Time Monitoring is Expensive

• Equivalence relation \equiv_{μ} over words

 $w \equiv_{\mu} w'$ if $\mu(wu) = \mu(w'u)$ for all words u

• Σ -counting statistic μ

$$w \equiv_{\mu} w' \;\; \Rightarrow \;\; \exists n \in \mathbb{Z} \; \forall \sigma \in \Sigma : |w|_{\sigma} = |w'|_{\sigma} + n$$

Theorem. Both mode and median are Σ -counting.

Theorem. Any real-time monitor of a Σ -counting statistic requires at least $|\Sigma|$ counters.

Mode over i.i.d. words

wc b b a b a c a a b c a c a a a ...modec - b b b b b - a - - a a a a a ...

Theorem. w has mode a iff a is unique max. of \Im .

$$\delta_{w_i}(\sigma) = \begin{cases} 1 \text{ if } w_i = \sigma \\ 0 \text{ otherwise} \end{cases} \quad \mathbb{E}(\delta_{w_i}) = & \text{Strong law of large numbers} \\ \frac{\sum_{i=1}^n \delta_{w_i}}{n} & \text{a.s.} & \text{Strong law of large numbers} \end{cases}$$

Efficient Mode Monitor

- Partition word into chunks of increasing size
- In each chunk, count two letters:
 - Mode candidate *x*
 - Mode contender *y*
- After each chunk, keep winner in x and replace y

n	1	2	3	4	5	6 · · ·
i	1	12	1 2 3	1234	1 2 3 4 5	$1 \cdots$
σ	c	b b	a b a	caab	cacaa	a ···
x	c	c	b	а	а	a ···
y	c	b	a	с	С	a · · ·
c_x	1	0 0	011	0122	01123	$1 \cdots$
c_y	1	12	1 1 2	1111	1 1 2 2 2	1 · · ·

Only four counters: c_x , c_y , n, i

Monitor correctness over i.i.d. words

Theorem. Our algorithm limit-monitors the mode.

Let a be the mode of an i.i.d. random ω -word.

$$\begin{split} & \mathbb{P}(\text{eventually always } x = a) \\ & \geq \mathbb{P}(\text{eventually (always } c_{\sigma} < c_{a} \land \text{eventually } y = a)) \\ & \geq \mathbb{P}(\text{always}_{\geq n} \ c_{\sigma} < c_{a} \land \text{eventually}_{\geq n} \ y = a) \end{split}$$

 $\mathbb{P}(\text{always}_{\geq n} c_{\sigma} < c_{a} \land \text{eventually}_{\geq n} y = a)$ $\geq \mathbb{P}(\text{always}_{\geq n} c_{\sigma} < c_{a})$ $= 1 \quad \text{as} \quad n \to \infty$

Generalized strong law of large numbers

What we actually do in the paper

• More general setting

Connected Markov chains

Key technical result

Generalized ergodic theorem

Monitoring general frequency properties
 Frequency formula → Monitor

An Ergodic Theorem over Infixes

ω -word	x	y	z	x	y	z	x	y	x	y	z	x	y	z	x	y	•••	
Prefixes	0	.5	.33	.25	.4	.33	.29	.38	.33	.4	.36	.33	.38	.36	.33	.38	$\xrightarrow{\text{a.s.}}$	$\frac{3}{8}$
Infixes	0		.5			.33				.5					.2		$\xrightarrow{\text{a.s.}}$	$\frac{3}{8}$

Theorem. The frequency of visiting a state *s* converges a.s. to the inverse of the expected return time of *s*, over arbitrary infixes of increasing length.

General Frequency Properties

• Frequency formula ϕ

Boolean combination of atomic formulas of the form

frequency term integer coefficients

"No event occurs 100 times more than any other event."

$$\bigwedge_{\substack{a,b\in\Sigma\\a\neq b}} f_a < 100 \cdot f_b$$

• Monitoring algorithm

Evaluate different atomic subformulas of ϕ over different infixes and partially evaluate ϕ in finite state part.

$$\dots w_{n,1} w_{n,2} \dots w_{n,k} \dots$$

$$\downarrow_{\phi_1} \phi_2 \qquad \phi_k$$

$$\downarrow_{\phi_k}$$

Summary

 Real-time monitoring of important frequency properties can be expensive

• Limit monitoring can be much more efficient

 $|\Sigma|$ vs 4 counters for the mode