
Faster Algorithms for
Weighted Recursive State Machines

Krishnendu Chatterjee1, Bernhard Kragl1,
Samarth Mishra2, and Andreas Pavlogiannis1

1 IST Austria, Klosterneuburg, Austria
2 IIT Bombay, Mumbai, India

Abstract. Pushdown systems (PDSs) and recursive state machines
(RSMs), which are linearly equivalent, are standard models for interpro-
cedural analysis. Yet RSMs are more convenient as they (a) explicitly
model function calls and returns, and (b) specify many natural param-
eters for algorithmic analysis, e.g., the number of entries and exits. We
consider a general framework where RSM transitions are labeled from
a semiring and path properties are algebraic with semiring operations,
which can model, e.g., interprocedural reachability and dataflow analysis
problems.
Our main contributions are new algorithms for several fundamental prob-
lems. As compared to a direct translation of RSMs to PDSs and the
best-known existing bounds of PDSs, our analysis algorithm improves
the complexity for finite-height semirings (that subsumes reachability
and standard dataflow properties). We further consider the problem of
extracting distance values from the representation structures computed
by our algorithm, and give efficient algorithms that distinguish the com-
plexity of a one-time preprocessing from the complexity of each individ-
ual query. Another advantage of our algorithm is that our improvements
carry over to the concurrent setting, where we improve the best-known
complexity for the context-bounded analysis of concurrent RSMs. Fi-
nally, we provide a prototype implementation that gives a significant
speed-up on several benchmarks from the SLAM/SDV project.

1 Introduction

Interprocedural analysis. One of the classical algorithmic analysis problems
in programming languages is the interprocedural analysis. The problem is at the
heart of several key applications, ranging from alias analysis, to data dependen-
cies (modification and reference side effect), to constant propagation, to live and
use analysis [32,35,10,15,23,18,13,14,17]. In seminal works [32,35] it was shown
that a large class of interprocedural dataflow analysis problems can be solved in
polynomial time.

Models for interprocedural analysis. Two standard models for interpro-
cedural analysis are pushdown systems (or finite automata with stacks) and
recursive state machines (RSMs) [4,5]. An RSM is a formal model for control

flow graphs of programs with recursion. We consider RSMs that consist of mod-
ules, one for each method or function that has a number of entry nodes and
a number of exit nodes, and each module contains boxes that represent calls
to other modules. A special case of RSMs with a single entry and a single exit
node for every module (SESE RSMs, aka supergraph in [32]) has also been con-
sidered. While pushdown systems and RSMs are linearly equivalent (i.e., there
is a linear translation from one model to the other and vice versa), there are
two distinct advantages of RSMs. First, the model of RSMs closely resembles
the problems of programming languages with explicit function calls and returns,
and hence even its special cases such as SESE RSMs has been considered to
model many applications. Second, the model of RSMs provides many parame-
ters, such as the number of entry and exit nodes, and the number of modules,
and better algorithms can be developed by considering that some parameters are
small. Typically the SESE RSMs can model data-independent interprocedural
analysis, whereas general RSMs can model data dependency as well. For most
applications, the number of entries and exits of a module, usually represents the
input parameters of the module.

Semiring framework. We consider a general framework to express computa-
tion properties of RSMs where the transitions of an RSM are labeled from a
semiring. The labels are referred to as weights. A computation of an RSM exe-
cutes transitions between configurations consisting of a node (representing the
current control state) and a stack of boxes (representing the current calling con-
text). To express properties of interest we need to define how to assign weights
to computations, i.e., to accumulate weights along a computation, and how to
assign weights to sets of computations, i.e., to combine weights across a set of
computations. The weight of a given computation is the semiring product of
the weights on the individual transitions of the computation, and the weight of
a given set of computations is the semiring plus of the weights of the individ-
ual computations in the set. For example, (i) with the Boolean semiring (with
semiring product as AND, and semiring plus as OR) we express the reachability
property; (ii) with a Dataflow semiring we can express problems from dataflow
analysis. One class of such problems is given by the IFDS/IDE framework [32,35]
that considers the propagation of dataflow facts along distributive dataflow func-
tions (note that the IFDS/IDE framework only considers SESE RSMs). Hence
the large and important class of dataflow analysis problems that can be ex-
pressed in the IFDS/IDE framework can also be expressed in our framework.
Pushdown systems with semiring weights have also been extensively considered
in the literature [34,21,33,19].

Problems considered. We consider the following basic distance problems.

– Configuration distance. Given a set of source configurations and a target con-
figuration, the configuration distance is the weight of the set of computations
that start at some source configuration and end in the target configuration. In
the configuration distance problem the input is a set of source configurations
and the output is the configuration distance to all reachable configurations.

2

– Superconfiguration distance. We also consider a related problem of supercon-
figuration distance. A superconfiguration represents a sequence of modules,
rather than a sequence of invocations. Intuitively, it does not consider the
sequence of function calls, but only which functions were invoked. This is
a coarser notion than configurations and allows for fast overapproximation.
The superconfiguration distance problem is then similar to the configuration
distance problem, with configurations replaced by superconfigurations.

– Node distance. Given a set of source configurations and a target node, the
node distance is the weight of the set of computations that start at some
source configuration and end in a configuration with the target node (with
arbitrary stack). In the node distance problem the input is a set of source
configurations and the output is the node distance to all reachable nodes.

Symbolic representation. A core ingredient for solving distance problems is
the symbolic representation of sets of RSM configurations and their manipu-
lation. Given a symbolic representation of the set of initial configurations, we
provide a two step approach to solve the distance problems. In step one we com-
pute a symbolic representation of the set of all configurations reachable from
the initial configurations. Furthermore, the transitions in the representation are
annotated with appropriate semiring weights to capture the various distances de-
scribed above. In step two we query the computed representation for the required
distances. Thus we make the important distinction between the complexity of a
one-time preprocessing and the complexity of every individual query.

Concurrent RSMs. While reachability is the most basic property, the study of
pushdown systems and RSMs with the semiring framework is the fundamental
quantitative extension of the basic problem. An orthogonal fundamental exten-
sion is to study the reachability property in a concurrent setting, rather than
the sequential setting. However, the reachability problem in concurrent RSMs
(equivalently concurrent pushdown systems) is undecidable [31]. A very rele-
vant problem to study in the concurrent setting is to consider context-bounded
reachability, where at most k context switches are allowed. The context-bounded
reachability problem is both decidable [28] and practically relevant [25,26].

Previous results. Many previous results have been established for pushdown
systems, and the translation of RSMs to pushdown systems implies that similar
results carry over to RSMs as well. We describe the most relevant previous
results with respect to our results. For an RSM R, let |R| denote its size, θe and
θx the maximum number of entries and exits, respectively, and f the number
of modules. The existing results for weighted pushdown systems over semirings
of height H [36,34] along with the linear translation of RSMs to pushdown
systems [4] gives an O(H · |R| · θe · θx · f)-time algorithm for the configuration
and node distance problems for RSMs. The previous results for context-bounded
reachability of concurrent pushdown systems [28] applied to concurrent RSMs

gives the following complexity bound: O(|R‖|5 · θ|| 5x · nk · |G|k), where |R‖| is

the size of the concurrent RSM, θ
||
x is the number of exit nodes, n is the number

of component RSMs, G is the global part of the concurrent RSM, and k is the
bound on the number of context switches.

3

Sequential Concurrent

Existing H · |R| · θe · θx · f [36,34] |R‖|5 · θ|| 5
x · nk · |G|k [28]

Our result H · (|R| · θe + |Call| · θe · θx) [Theorem 1] |R‖| · θ||e · θ
||
x · n

k · |G|k+2 [Theorem 7]

Table 1. Asymptotic time complexity of computing configuration automata.

Semiring RSM

General Boolean Constant size Size |D|* Sparse†

Query Query Query Preprocess Query Preprocess Query

n · θ2e |R| · θe · n
logn n · θ2e

log θe
|R| · θ1+ε·log |D|e n · θ2e

ε2·log2 θe
|R| · θω−1

e · x n ·
⌈
θ2e

log x

⌉
Table 2. Asymptotic time complexity of answering a configuration/superconfiguration
distance query of size n. Preprocess time refers to additional preprocessing after the
configuration automaton is constructed.

* For any fixed ε > 0.
† In a sparse RSM every module only calls a constant number of other modules, and

the result applies only to superconfiguration distances. The parameter x has to
satisfy x = O(poly(|R|)), and ω is the smallest constant required for multiplying
two square matrices of size m×m in time O(mω) (currently ω ' 2.372).

Our contributions. Our main contributions are as follows:
1. Finite-height semirings. We present an algorithm for computing configura-

tion and node distance problems for RSMs over semirings with finite height
H with running time O(H · (|R| · θe + |Call | · θe · θx)), where |Call | is
the number of call nodes. The algorithm we present constructs the sym-
bolic representations from which the distances can be extracted. Thus
our algorithm improves the current best-known algorithms by a factor of
Ω((|R| · f)/(θx + |Call |)) (Table 1) (also see Remark 3 for details).

2. Distance queries. Once a symbolic representation is constructed, it can be
used for extracting distances. We present algorithms which given a config-
uration query of size n, return the distance in O(n · θ2e) time. Furthermore,
we present several improvements for the case when the semiring has a small
domain. Finally, we show that when the RSM has a sparse call graph, we
can obtain a range of tradeoffs between preprocessing and querying times.
Our results on distance queries are summarized in Table 2.

3. Concurrent RSMs. For the context-bounded reachability of concurrent RSMs

we present an algorithm with time bound O(|R‖|·θ||e ·θ||x ·nk ·|G|k+2). Thus our
algorithm significantly improves the current best-known algorithm (Table 1).

4. Experimental results. We experiment with a basic prototype implementation
for our algorithms. Our implementation is an explicit (rather than sym-
bolic) one. We compare our implementation with jMoped [1], which is a
leading and mature tool for weighted pushdown systems, on several real-
world benchmarks coming from the SLAM/SDV project [6,7]. We consider
the basic reachability property (representative for finite-height semirings)
for the sequential setting. Our experimental results show that our algorithm
provides significant improvements on the benchmarks compared to jMoped.

4

Technical contribution. The main technical contributions are as follows:
– We show how to combine (i) the notion of configuration automata as a sym-

bolic representation structure for sets of configurations, and (ii) entry-to-exit
summaries to avoid redundant computations, and obtain an efficient dy-
namic programming algorithm for various distance problems in RSMs over
finite-height semirings.

– Configuration and superconfiguration distances are extracted using graph
traversal of configuration automata. When the semiring has small domain,
we obtain several speedups by exploiting advances in matrix-vector mul-
tiplication. Finally, the speedup of superconfiguration distance extraction
on sparse RSMs is achieved by devising a Four-Russians type of algorithm,
which spends some polynomial preprocessing time in order to allow com-
pressing the query input in blocks of logarithmic length.

All proofs are provided in Appendix A and C.

2 Preliminaries

In this section we present the necessary definitions of recursive state machines
(RSMs) where every transition is labeled with a value (or weight) from an ap-
propriate domain (semiring). Then we formally state the problems we study on
weighted RSMs.

Semirings. An idempotent semiring is a quintuple 〈D,⊕,⊗, 0, 1〉, where D is a
set called the domain, 0 and 1 are elements of D, and ⊕ (the combine operation)
and ⊗ (the extend operation) are binary operators on D such that
1. 〈D,⊕, 0〉 is an idempotent commutative monoid with neutral element 0,
2. 〈D,⊗, 1〉 is a monoid with neutral element 1,
3. ⊗ distributes over ⊕,
4. 0 is an annihilator for ⊗, i.e., a⊗ 0 = 0⊗ a = 0 for all a ∈ D.

An idempotent semiring has a canonical partial order v, defined by

a v b ⇐⇒ a⊕ b = a.

Furthermore, this partial order is monotonic, i.e., for all a, b, c ∈ D

a v b =⇒ a⊕ c v b⊕ c,
a v b =⇒ a⊗ c v b⊗ c,
a v b =⇒ c⊗ a v c⊗ b.

The height H of an idempotent semiring is the length of the longest descending
chain in v. In the rest of the paper we will only write semiring to mean an
idempotent finite-height semiring.

Remark 1. Instead of finite height, the more general descending chain condition
would be sufficient for our purposes. This only requires that there are no infinite
descending chains in v, but there is not necessarily a finite height H.

5

Recursive State Machines (informally). Intuitively, an RSM is a collection
of finite automata, called modules, such that computations consist of ordinary
local transitions within a module as well as calls to other modules, and returns
from other modules. For this, every module has a well-defined interface of entry
and exit nodes. Calls to other modules are represented by boxes, which have call
and return nodes corresponding to the respective entry and exit nodes of the
called module.

Unlike pushdown automata (PDAs), there is no explicit stack manipulation
in RSMs. Instead a call stack is maintained implicitly along computations as
follows. When a call node of a box is reached, the control is passed to the
respective entry node of the called module and the box is pushed onto the top of
the stack. When an exit node of a module is reached, a box is popped off from
the top of the stack and the control is passed to the corresponding return node of
the box. Hence, the stack is a sequence of boxes representing the current calling
context and a configuration in a computation of an RSM is a node together with
a sequence of boxes.

Recursive State Machines (formally). A recursive state machine (RSM)
over a semiring 〈D,⊕,⊗, 0, 1〉 is a tuple R = 〈M1, . . . ,Mk〉, where every module
Mi = 〈Bi, Yi, Ni, δi, wi〉 is given by
– a finite set Bi of boxes,
– a mapping Yi : Bi 7→ {1, . . . , k},
– a finite set Ni = Ini ∪ Eni ∪ Ex i ∪ Call i ∪ Ret i of nodes, partitioned into
• internal nodes Ini,
• entry nodes Eni,
• exit nodes Ex i,
• call nodes Call i = {〈b, e〉 | b ∈ Bi and e ∈ EnYi(b)},
• return nodes Ret i = {〈b, x〉 | b ∈ Bi and x ∈ ExYi(b)},

– a transition relation δi ⊆ (Ini ∪ Eni ∪ Ret i)× (Ini ∪ Ex i ∪ Call i),
– a weight function wi : δi 7→ D, with wi(u, x) = 1 for every exit node x ∈ Ex i.

We write B for
⋃k
i=1Bi, and similarly for N , In, En, Ex , Call , Ret , δ, w. To

measure the size of an RSM we let |R| = max(|N |,
∑
i |δi|). A major source of

complexity in analysis problems for RSMs is the number of entry and exit nodes
of the modules. Throughout the paper we express complexity with respect to the
entry bound θe = max1≤i≤k |Eni| and the exit bound θx = max1≤i≤k |Ex i|, i.e.,
the maximum number of entries and exits, respectively, over all modules. Note
that the restriction on the weight function to assign weight 1 to every transition
to an exit node is wlog, as any weighted RSM that does not respect this can be
turned into an equivalent one that does, with only a constant factor increase in
its size.

Stacks. A stack is a sequence of boxes S = b1 . . . br, where the first box denotes
the top of the stack; and ε is the empty stack. The height of S is |S| = r, i.e,
the number of boxes it contains. For a box b and a stack S, we denote with bS
the concatenation of b and S, i.e., a push of b onto the top of S.

Configurations and transitions. A configuration of an RSM R is a tuple
〈u, S〉, where u ∈ In ∪ En ∪ Ret is an internal, entry, or return node, and S is

6

a stack. For S = b1 . . . br, where bi ∈ Bji for 1 ≤ i ≤ r and some ji, we require
that Yji(bi) = ji−1 for 1 < i ≤ r, as well as u ∈ NYj1 (b1). This corresponds to
the case where the control is inside the module of node u, which was entered via
box b1 from module Mj1 , which was entered via box b2 from module Mj2 , and
so on.

We define a transition relation =⇒ over configurations and a correspond-
ing weight function w : =⇒ 7→ D , such that 〈u, S〉 =⇒ 〈u′, S′〉 with
w(〈u, S〉, 〈u′, S′〉) = v if and only if there exists a transition t ∈ δi in R with
wi(t) = v and one of the following holds:
1. Internal transition: u′ ∈ Ini, t = 〈u, u′〉, and S′ = S.
2. Call transition: u′ = e ∈ EnYi(b) for some box b ∈ Bi, t = 〈u, 〈b, e〉〉, and
S′ = bS.

3. Return transition: u′ = 〈b, x〉 ∈ Ri for some box b ∈ Bi and exit node
x ∈ ExYi(b), t = 〈u, x〉, and S = bS′.

Note that we follow the convention that a call immediately enters the called
module and a return immediately returns to the calling module. Hence, the
node of a configuration can be an internal node, an entry node, or a return
node, but not a call node or an exit node.

Computations. A computation of an RSM R is a sequence of configurations
π = c1, . . . , cn, such that ci =⇒ ci+1 for every 1 ≤ i < n. We say that π is
a computation from c1 to cn, of length |π| = n − 1, and of weight ⊗(π) =⊗n−1

i=1 w(ci, ci+1) (the empty extend is 1). We write π : c =⇒∗ c′ to denote that
π is a computation from c to c′ of any length. A computation π : c =⇒∗ c′ is
called non-decreasing if the stack height of every configuration of π is at least as
large as that of c (in other words, the top stack symbol of c is never popped in
π). The computation π is called same-context if it is non-decreasing, and c and
c′ have the same stack height. A computation that cannot be extended by any
transition is called a halting computation. For a set of computations Π we define
its weight as

⊕
(Π) =

⊕
π∈Π ⊗(π) (the empty combine is 0). For a configuration

c and a set of configurations R we denote by Π(R, c) the set of all computations
from any configuration in R to c. Here, and for similar purposes below, we will
use the convention to write Π(c, c′) instead of Π({c}, c′).

Example 1. Figure 1 shows an RSM R = 〈M1,M2〉 that consists of two mod-
ules M1 and M2. The modules are mutually recursive, since box b1 of module
M1 calls module M2, and box b2 of module M2 calls module M1. A possible
computation of R is

〈e11, ε〉
w1=⇒ 〈e2, b1〉

w5=⇒ 〈e11, b2b1〉
w1=⇒ 〈e2, b1b2b1〉

w6=⇒ 〈e21, b2b1b2b1〉
w2=⇒

〈u1, b2b1b2b1〉
w4=⇒ 〈〈b2, x1〉, b1b2b1〉

w7=⇒ 〈〈b1, x2〉, b2b1〉
w3=⇒ 〈u1, b2b1〉

w4=⇒
〈〈b2, x1〉, b1〉

w7=⇒ 〈〈b1, x2〉, ε〉
w3=⇒ 〈u1, ε〉.

(1)

Distance problems. Given a set of configurations R, the set of configurations
that are reachable from R is

post∗(R) = {c | ∃c0 ∈ R : c0 =⇒∗ c}.

7

M1

e11

e21

b1

u1

x1

w1

w2

w3

w4

Y1(b1) = 2

M2

e2
b2

x2w6

w5 w7

w8

Y2(b2) = 1

Fig. 1. Example of a weighted RSM that consists of two modules with mutual recursion.

Instead of mere reachability, we are interested in the following distance metrics
that aggregate over computations from R using the semiring combine and hence
are expressed as semiring values.
– Configuration distance. The configuration distance from R to c is defined as

d(R, c) =
⊕

(Π(R, c)).

That is, we take the combine over the weights of all computations from a
configuration in R to c. Naturally, for configurations c not reachable from R
we have d(R, c) = 0.

– Superconfiguration distance. A superstack is a sequence of modules S =
M1 . . .Mr. A stack S = b1 . . . br refines S if bi ∈ Bi for all 1 ≤ i ≤ r, i.e.,
the i-th box of S belongs to the i-th module of S. A superconfiguration of R
is a tuple 〈u, S〉. Let J〈u, S〉K = {〈u, S〉 | S refines S}. The superconfiguration
distance from R to a superconfiguration c is defined as

d(R, c) =
⊕
c∈JcK

d(R, c)

The superconfiguration distance is only concerned with the sequence of mod-
ules that have been used to reach the node u, rather than the concrete se-
quence of boxes as in the configuration distance. This is a coarser notion
than configuration and allows for fast overapproximation.

– Node and same-context distance. The node distance of a node u from R is
defined as

d(R, u) =
⊕

c=〈u,S〉

d(R, c)

where S ranges over stacks of R. Finally, the same-context node distance of
a node u in module Mi is defined as

d(Mi, u) =
⊕
e∈Eni

d(〈e, ε〉, 〈u, ε〉).

Intuitively, the node distance minimizes over all possible ways (i.e., stack
sequences) to reach a node, and the same-context problem considers nodes
in the same module that can be reached with empty stack.

8

Relevance. We discuss the relevance of the model and the problems we consider
in program analysis. A prime application area of our framework is the analysis
of procedural programs. Computations in an RSM correspond to the interpro-
cedurally valid paths of a program. The distance values defined above allow to
obtain information at different levels of granularity, depending on the require-
ment for a particular analysis. MEME (multi-entry, multi-exit) RSMs naturally
arise in the model checking of procedural programs, where every node represents
a combination of control location and data. Checking for reachability, usually of
an error state, requires only the simple Boolean semiring. On the other hand,
interprocedural data flow analysis problems, like in IFDS/IDE, are usually cast
on SESE (single-entry, single-exit) RSMs (the control flow graph of the pro-
gram) using richer semirings. Our framework captures both of these important
applications, and furthermore allows a hybrid approach of modeling program
information both in the state space of the RSM as well as in the semiring.

3 Configuration Distance Algorithm

In this section we present an algorithm which takes as input an RSM R and a
representation of a regular set of configurations R, and computes a representa-
tion of the set of reachable configurations post∗(R) that allows the extraction
of the distance metrics defined above. In Section 3.1 we introduce configura-
tion automata as representation structures for regular sets of configurations. In
Section 3.2 we present an algorithm for RSMs over finite-height semirings. The
algorithm saturates the input configuration automaton with additional tran-
sitions and assigns the correct weights via a dynamic programming approach
that gradually relaxes transition weights from an initial overapproximation. We
exploit the monotonicity property in idempotent semirings which allows to fac-
tor the computation into subproblems, and hence corresponds to the optimal
substructure property of dynamic programming. Although a transition might
have to be processed multiple times, the finite height of the semiring prevents a
transition from being relaxed indefinitely. Here we show that the final configu-
ration automata constructed by our algorithms correctly capture configuration
distances. The extraction of distance values is considered in Section 4.

3.1 Configuration Automata

In general, like R, the set post∗(R) is infinite. Hence we make use of a represen-
tation of regular sets of configurations as the language accepted by configuration
automata, defined below. The main feature of a regular set of configurations R
is its closure under post∗. That is, post∗(R) is also a regular set of configurations
and can be represented by a configuration automaton.

Intuition. Every state in a configuration automaton corresponds to a node in
the RSM. In order to represent arbitrary regular sets of configurations we must
allow the replication of states with the same node. Therefore we annotate every
state with a mark (see Remark 2 for details). Transitions are of two types:

9

(i) ε-transitions pointing from a node u to an entry node e and labeled with ε,
denoting that a computation reaching u entered the module of u via entry e,
and (ii) b-transitions pointing from an entry node e to another entry node e′ and
labeled with a box b, corresponding to a call transition 〈u, 〈b, e〉〉 in the module
of e′ in the RSM. Reading the labels along a path in the automaton yields a
stack.

In addition to the labeling with boxes we label every transition of a config-
uration automaton with a semiring value. In the final configuration automata
constructed by our algorithms, every run generates a configuration c and thereby
captures a certain subset Π ⊆ Π(R, c) of computations from the initial set of
configurations R to c. The weight of the run equals the combine over the weight
of the computations in Π. The combine over the weights of all runs in the au-
tomaton that generate c equals the combine over the weights of all computations
from R to c, i.e., the configuration distance d(R, c). Since the transitions in a
configuration automaton are essentially reversed transitions of the RSM (and
the extend operation is not commutative), the weight of a run is given by the
extend of the transitions in reversed order.

Configuration automata. Let M be a countably infinite set of marks. A con-
figuration automaton for an RSM R, also called an R-automaton, is a weighted
finite automaton C = 〈Q,B,−→, I, F, `〉, where
– Q ⊆ (In ∪ En ∪ Ret)×M is a finite set of states,
– B (the boxes of R) is the transition alphabet,
– −→ ⊆ Q × (B ∪ {ε}) × Q is a transition relation, such that every transition

has one of the following forms:

• b-transition: 〈e,me〉
b−→ 〈e′,me′〉, where b ∈ Bi for some i, e ∈ EnYi(b),

and e′ ∈ Eni,
• ε-transition: 〈u,mu〉

ε−→ 〈e,me〉, where e ∈ Eni for some i, and either
u ∈ Ini ∪ Ret i, or u = e,

– I ⊆ Q is a set of initial states,
– F ⊆ Q and F ⊆ En ×M is a set of final states,
– ` : −→ 7→ D is a weight function that assigns a semiring weight to every

transition.

Remark 2 (Marks). The marks in the states of a configuration automaton are
introduced to support the general setting of representing an arbitrary set of
configurations, e.g., with stacks that are not even reachable in the RSM. Since
every state is tied to an RSM node, the marks allow to have multiple “copies” of
the same node in unrelated parts of the automaton. Furthermore, our algorithm
(Section 3.2) introduces a fresh mark to recognize when it can safely store entry-
to-exit summaries. For the common setting of starting the analysis from the entry
nodes of a main module with empty stack, marks are not necessary and can be
elided.

Runs and regular sets of configurations. A run of a configuration automa-
ton C is a sequence λ = t1, . . . , tn, such that there are states q1, . . . , qn+1 and

each ti = qi
σi−→ qi+1 is a transition of C labeled with σi. We say that λ is a

10

run from q1 to qn+1, of length |λ| = n, labeled by S = σ1 . . . σn, and of weight

⊗(λ) =
⊗1

i=n `(ti) (note that the weights of the transitions are extended in

reverse order). We write λ : q
S/v−−→∗ q′ to denote that λ is a run from q to

q′ of any length labeled by S and of weight v. We will also use the notation
without v if we are not interested in the weight. The run λ is accepting if q ∈ I
and q′ ∈ F . A configuration 〈u, S〉 is accepted by C if there is an accepting run

λ : 〈u,m〉 S−→∗ qf for some mark m ∈ M, and additionally ⊗(λ) 6= 0. We say
that two runs are equivalent if they accept the same configuration with the same
weight. For technical convenience we consider that for every state 〈e,me〉 with

entry node e ∈ En there is an ε-self-loop 〈e,me〉
ε−→ 〈e,me〉 with weight 1.

The set of all configurations accepted by C is denoted by L(C). A set of
configurations R is called regular if there exists an R-automaton C such that
L(C) = R. For a configuration c let Λ(c) be the set of all accepting runs of c and
define C(c) =

⊕
λ∈Λ(c)⊗(λ) the weight that C assigns to c.

We note that, despite the imposed syntactic restrictions, our definition of
configuration automata is most general in the following sense.

Proposition 1. Let R be a set of configurations such that their string repre-
sentations is a regular language. Then there exists a configuration automaton C
such that L(C) = R.

3.2 Algorithm for Finite-Height Semirings

In the following we present algorithm ConfDist for computing the set post∗(R)
of a regular set of configurations R. The algorithm operates on an R-automaton
C with L(C) = R. In the end, it has constructed an R-automaton Cpost∗ such
that L(Cpost∗) = post∗(R). Moreover, the configuration distance d(R, c) from R
to any configuration c can be obtained from the labels of Cpost∗ as Cpost∗(c).
A computation is called initialized, if its first configuration is accepted by the
initial configuration automation C.
Key technical contribution. In this work we consider the configuration dis-
tance computation. Using the notion of configuration automata as a symbolic
representation structure for regular sets of configurations, the solution of the
configuration distance problem has been previously studied in the setting of
(weighted) pushdown systems [36,34,9]. One of the main algorithmic ideas for
the efficient RSM reachability algorithm of [4] is to expand RSM transitions and
use entry-to-exit summaries to avoid traversing a module more than once. How-
ever, the algorithm in [4] is limited to the node reachability problem. We combine
the symbolic representation of configuration automata, along with the summa-
rization principle, to obtain an efficient algorithm for the general configuration
distance problem on RSMs.

Intuitive description of ConfDist. The intuition behind our algorithm is
very simple: it performs a forward search in the RSM. In every iteration it picks
a frontier node u and extends the already discovered computations to u with
the outgoing transitions from u. Depending on the type of outgoing transitions,

11

a new node discovered and added to the frontier can be (a) an internal node
by following an internal transition, (b) the entry node of another module by
following a call transition, and (c) a return node corresponding to a previously
discovered call by following an exit transition.

In summary, the algorithm simply follows interprocedural paths. However,
the crux to achieve our complexity is to keep summaries of paths through a
module. Whenever we discovered a full (interprocedural) path from an entry
e to an exit x, we keep its weight as an upper bound. Now any subsequently
discovered call reaching e does not need to continue the search from e, but
short-circuits to x by using the stored summary.

Preprocessing. In order to ease the formal presentation of the algorithm, we
consider the following preprocessing on the initial configuration automaton C.
Let M ⊆M be the set of marks in the initial automaton and m̂ ∈M \M a fresh
mark.

1. For every node u ∈ In ∪ En ∪ Ret , we add a new state 〈u, m̂〉 marked with
the fresh mark. Additionally, all these new states are declared initial.

2. For every initial state 〈u,mu〉 ∈ I such that there is a call transition t =
〈u, 〈b, e〉〉 ∈ δi in R, for every state 〈e′,me′〉 where e′ is an entry node of the

same module as u, we add a b-transition 〈e, m̂〉 b−→ 〈e,me′〉 with weight 0.
3. For every state 〈e,me〉 with entry node e ∈ Eni and every internal or return

node u ∈ Ini∪Ret i in the same module as e, we add an ε-transition 〈u, m̂〉 ε−→
〈e,me〉 with weight 0.

Essentially the preprocessing a priori adds to C all possible states and transi-
tions, so that the algorithm only has to relax those transitions (i.e., without
adding them first). Note that the preprocessing only provides for an easier pre-
sentation of our algorithm. Indeed, in practice it would be impractical to do the
full preprocessing and thus our implementation adds states and transitions to
the automaton on the fly.

Technical description of ConfDist. We present a detailed explanation of the
algorithm supporting the formal description given in Algorithm 1. We require
that every transition in the input configuration automaton C has weight 1, since
the configurations in L(C) should not contribute any initial weight to the config-
uration distance. The algorithm maintains a worklist WL of weighted transitions

either of the form 〈u,mu〉
ε−→ 〈e,me〉 or 〈e,me〉

b−→ 〈e′,me′〉, and a summary
function sum : (En × M) × Ex 7→ D. Initially, the worklist contains all such
transitions where the source state 〈u,mu〉 is an initial state in I, and sum is all
0. In every iteration a transition tC is extracted from the worklist and processed
as follows. Since every accepting run starting with tC corresponds to a reach-
able configuration 〈u, S〉 (where S varies over different runs), every transition
tR = 〈u, u′〉 in R gives rise to another reachable configuration. More precisely,
the run corresponds to a set of computations reaching 〈u, S〉 from the initial
set of configurations, and tR allows to extend these computations by one step.
The algorithm incorporates the newly discovered computations by relaxing a
transition as follows, illustrated in Figure 2.

12

tR = 〈u, u′〉

〈u,mu〉 〈e,me〉

〈u′, m̂〉

ε S

ε

(a) Internal transition (Lines 8–9)

tR = 〈u, 〈b, e′〉〉

〈u,mu〉 〈e,me〉

〈e′, m̂〉

ε S

b

(b) Call transition (Lines 10–12)

tR = 〈u, x〉

〈u,mu〉 〈e,me〉 〈e′,me′〉

〈〈b, x〉, m̂〉

ε b S′

ε

(c) Exit transition (Lines 13–17)

sum(〈e, m̂〉, x)

〈e, m̂〉 〈e′,me′〉

〈〈b, x〉, m̂〉

b S

ε

(d) Using summary (Lines 18–21)

Fig. 2. Relaxation steps of ConfDist.

1. If tC is of the form 〈u,mu〉
ε−→ 〈e,me〉, then:

(a) If u′ is an internal node then the algorithm captures the internal transi-

tion 〈u, S〉 =⇒ 〈u′, S〉 by relaxing the transition 〈u′, m̂〉 ε−→ 〈e,me〉 using
the weights `(tC) and w(tR).

(b) If u′ is a call node 〈b, e′〉 then the transition 〈e′, m̂〉 b−→ 〈e,me〉 is relaxed
with the new weight `(tC)⊗w(tR). Furthermore, an ε-self-loop is stored
in the worklist to continue exploration from the called entry node e′.

(c) If u′ is an exit node x then the algorithm relaxes sum(〈e,me〉, x) if a
smaller computation to x has been discovered. Note that for me = m̂ this
corresponds to valid entry-to-exit computations from e to x. If another
call to e is discovered later, the summary is used to avoid traversing the
module again. For me 6= m̂ the summary does not necessarily correspond
to valid entry-to-exit computations (e.g., because node u was provided
as an initial configuration) and is only stored to avoid redundant work.
For a return transition from 〈u, S〉 the stack S has to be non-empty.
The algorithm looks for all possible boxes b at the top of S by going
along a b-transition from 〈e,me〉 to a state 〈e′,me′〉. Then for any S =

bS′, relaxing the transition 〈〈b, x〉, m̂〉 ε−→ 〈e′,me′〉 captures the return
transition 〈u, S〉 =⇒ 〈〈b, x〉, S′〉. Note that here we make use of the fact
that the return transition itself has weight 1.

2. If tC is of the form 〈e,me〉
b−→ 〈e′,me′〉, then:

(d) for every exit node x in the module of e the summary function is used

to relax the weight of the transition 〈〈b, x〉, m̂〉 ε−→ 〈e′,me′〉 to the value
`(tC)⊗ sum(〈e, m̂〉, x).

The initial states of Cpost∗ are the initial states of C together with all states
with the fresh mark added in the preprocessing. The final states of Cpost∗ are
the unmodified final states of C.

13

Algorithm 1: ConfDist

Input: RSM R and R-automaton C with `(t) = 1 for all transitions t in C
Output: R-automaton Cpost∗ with Cpost∗(c) = d(L(C), c) for all configurations c

1 preprocess C as described in the main text
// Initialization of worklist and summary function

2 WL := {t = q
ε−→ q′ | q ∈ I and `(t) = 1}

3 sum(〈e,me〉, x) := 0 for all states 〈e,me〉 and x ∈ Ex
// Main loop

4 while WL 6= ∅ do
5 extract tC from WL

6 if tC = 〈u,mu〉
ε−→ 〈e,me〉 then

7 let Mi be the module of node u
// Internal transitions from u

8 foreach tR = 〈u, u′〉 ∈ δi where u′ ∈ Ini do

9 Relax(〈u′, m̂〉 ε−→ 〈e,me〉, `(tC)⊗ wi(tR))

// Call transitions from u
10 foreach tR = 〈u, 〈b, e′〉〉 ∈ δi do
11 Relax(〈e′, m̂〉 b−→ 〈e,me〉, `(tC)⊗ wi(tR))

12 add 〈e′, m̂〉 ε−→ 〈e′, m̂〉 to WL, if it was never added before

// Exit transitions from u
13 foreach tR = 〈u, x〉 ∈ δi where x ∈ Ex i do
14 if sum(〈e,me〉, x) 6v `(tC) then
15 sum(〈e,me〉, x) := sum(〈e,me〉, x)⊕ `(tC)

16 foreach 〈e,me〉
b/v−−→ 〈e′,me′〉 do

17 Relax(〈〈b, x〉, m̂〉 ε−→ 〈e′,me′〉, v ⊗ sum(〈e,me〉, x))

18 else if tC = 〈e,me〉
b−→ 〈e′,me′〉 then

19 let Mi be the module of node e
// Using entry-to-exit summaries

20 foreach x ∈ Ex i do

21 Relax(〈〈b, x〉, m̂〉 ε−→ 〈e′,me′〉, `(tC)⊗ sum(〈e, m̂〉, x)

22 Procedure Relax(t, v)
23 if `(t) 6= `(t)⊕ v then
24 `(t) := `(t)⊕ v
25 add t to WL

Example 2. In Figure 3 we illustrate an execution of ConfDist for the reach-
ability problem in the RSM from Figure 1. The reader can verify that every
configuration in the example computation (1) is accepted by a run of the con-
structed automaton.

14

Fig. 3. The configuration automa-
ton Cpost∗ constructed by ConfDist

for the RSM in Figure 1 over the
Boolean semiring 〈〈0, 1〉,∨,∧, 0, 1〉,
expressing the reachability prob-
lem. The initial input automaton C
is given by the black states, whereas
the gray states represent the newly
added states with the fresh mark m̂.
The black/gray color gives a sim-
ilar distinction for the transitions
(i.e., the gray transitions have been
added by the algorithm). The set of
initial states of C is I = {e11, e2},
and the set of final states is the sin-
gleton set F = {e11}. Transitions
added in the preprocessing phase
with value 0 are not shown.

e2

e11

e11

〈b1, x2〉

e2

e21

u1

〈b2, x1〉

b1

ε

ε

ε ε

ε

ε

b1

b2

b2

b2

b2

ε

ε

ε

ε

ε

Correctness. In the following we outline the correctness of the algorithm. We
start with a simple observation about the shape of runs in the constructed con-
figuration automaton.

Proposition 2. For every accepting run λ there exists an equivalent accepting
run λ′ that starts with an ε-transition followed by only b-transitions. Further-
more, all but the first state contain an entry node.

The following three lemmas capture the correctness of ConfDist. We start
with completeness, namely that the distance computed for any configuration c
is at most the actual distance from the initial set of configurations L(C) to c.
The proof relies on showing that for any initialized computation π : 〈u, S〉 =⇒∗
〈u′, S′〉 there is a run λ accepting 〈u′, S′〉 such that ⊗(λ) v ⊗(π), and follows
an induction on the length |π|.

Lemma 1 (Completeness). For every configuration c we have Cpost∗(c) v
d(L(C), c).

We now turn our attention to soundness, namely that the distance computed
for any configuration c is at least the actual distance from the initial set of config-
urations L(C) to c. The proof is established via a set of interdependent invariants
that state that the algorithm maintains sound entry-to-exit summaries and any
run in the automaton has a weight that is witnessed by a set of computations.

Lemma 2 (Soundness). For every configuration c we have d(L(C), c) v
Cpost∗(c).

Complexity. Finally, we turn our attention to the complexity analysis of the
algorithm, which is done by bounding the number of times the algorithm can

15

perform a relaxation step. The complexity bound is based on the height of the
semiring H, which implies that every transition can be relaxed at most H times.
The contribution of the size of the initial automaton C in the complexity is
captured by the number of initial marks κ.

Lemma 3 (Complexity). Let κ be the number of distinct marks m ∈ M of
the initial automaton C. Algorithm ConfDist constructs Cpost∗ in time O(H ·
(|R| · θe · κ2 + |Call | · θe · θx · κ3)), and Cpost∗ has O(|R| · θe · κ2) transitions.

We summarize the results of this section in the following theorem.

Theorem 1. Let R be an RSM over a semiring of height H, and C an R-
automaton with κ marks. Algorithm ConfDist constructs in O(H · (|R| · θe ·κ2 +
|Call | · θe · θx · κ3)) time an R-automaton Cpost∗ with κ + 1 marks, such that
d(L(C), c) = Cpost∗(c) for every configuration c.

Remark 3 (Comparison with existing work). We now relate Theorem 1 with
the existing work for computing configuration distance (often called generalized
reachability in the literature) in weighted pushdown systems (WPDS) [36,34].
For simplicity we assume that the initial automaton is of constant size. A formal
description of WPDS is omitted; the reader can refer to [4,34]. Let P be a WPDS
where:
1. nP is the number of states
2. n∆ is the size of the transition relation
3. nsp is the number of different pairs 〈p′, γ′〉 such that there is a transition of

the form 〈p, γ〉 −→ 〈p′, γ′γ′′〉 (i.e., from some state p with γ on the top of
the stack, the WPDS P (i) transitions to state p′, (ii) swaps γ and γ′′, and
(iii) pushes γ′ on the top of the stack).

As shown in [34], given a WPDS P with weights from a semiring with height
H, together with a corresponding automaton CP that encodes configurations of
P, an automaton CPpost∗ can be constructed as a solution to the configuration
distance problem for P. For ease of presentation we focus on the common case
where CP has constant size (e.g., for encoding an initial configuration of P with
empty stack). Then the time required to construct CPpost∗ is O(H · nP · n∆ ·
nsp) [36,34].

A direct consequence of [4, Theorem 1] is that an RSM R and a configuration
automaton CR can be converted to an equivalent PDS P and configuration
automaton CP , and vice versa, such that the following equalities hold:

|R| = Θ(n∆); θx = Θ(nP); f · θe = Θ(nsp),

where f represents the number of modules. Hence, the bound we obtain by
translating the input RSM to a WPDS and using the algorithm of [36,34] is
O(H · |R| · θe · θx · f). Our complexity bound on Theorem 1 is better by a factor
Ω((|R| · f)/(θx + |Call |)). Moreover, to verify such improvements, we have also
constructed a family of dense RSMs, and apply our algorithm, and compare
against the jMoped implementation of the existing algorithms, and observe a
linear speed-up (see Section 6.1 for details).

16

The above analysis considers an explicit model, whereR comprises two parts,
a program control-flow graph RCFG and the set of all data valuations V , where
|V | = θe = θx. Hence, |R| = |RCFG| · |V |2. In a symbolic model, where all the
data valuations are tracked on the semiring, the input RSM is a factor |V |2
smaller (i.e., the contribution of the data valuation to |R|), and θe = θx = 1.
However, now each semiring operation incurs a factor |V |2 increase in time cost,
and the height of the semiring increases by a factor |V |2 as well, in the worst
case. Hence, existing symbolic approaches for PDSs have the same worst-case
time complexity as the explicit one, and our comparison applies to these as
well. For further discussion on symbolic extensions of our algorithm we refer to
Appendix B.

4 Distance Extraction

The algorithm presented in Section 3 takes as input a weighted RSM R over
a semiring and a configuration automaton C that represents a regular set R of
configurations of R, and outputs an automaton Cpost∗ that encodes the distance
d(R, c) to every configuration c. We now discuss the algorithmic problem of
extracting such distances from Cpost∗ , and present fast algorithms for this prob-
lem. First we will consider the general case for RSMs over an arbitrary semiring.
Then we present several improvements for special cases, like RSMs over a semi-
ring with small domain, or sparse RSMs. As the correctness of the constructions
is straightforward, our attention will be on the complexity.

4.1 Distances over General Semirings

Configuration distances. Given a configuration c = 〈u, S〉, S = b1 . . . b|S|, the
task is to extract d(R, c) =

⊕
(Π(R, c)). This is done by a dynamic-programming

style algorithm, which computes iteratively for every prefix b1 . . . bi of S and state
〈e,me〉 with e ∈ Enj and bi ∈ Bj , the weight

w〈e,me〉 =
⊕
{⊗(λ) | λ : 〈u,mu〉

b1...bi−−−−→∗ 〈e,me〉}.

Since there are O(κ2 · θ2e) transitions labeled with bi, every iteration requires
O(κ2 · θ2e) time, and the total time for computing d(R, c) is O(|S| · κ2 · θ2e).
Superconfiguration distances. Given a superconfiguration c = 〈u, S〉, S =
M1 . . .M|S|, the task is to extract d(R, c) =

⊕
c∈J〈u,S〉K d(R, c). To handle such

queries, we perform a one-time preprocessing of Cpost∗ , so that the transitions are
labeled with modules instead of boxes. That is, we create an automaton Cpost∗ ,
initially identical to Cpost∗ . Then we add a transition t = 〈e,me〉

M−−→ 〈e′,me′〉,
with M being the module of e′, if there exists a b-transition 〈e,me〉

b−→ 〈e′,me′〉
in Cpost∗ . The weight function ` of Cpost∗ is such that the weight of the transition
t is

`(t) =
⊕

t′:〈e,me〉
b−→〈e′,me′ 〉

`(t′)

17

where t′ ranges over transitions of Cpost∗ . This construction requires linear time
in the number of b-transitions of Cpost∗ , i.e., O(|R| · θe). It is straightforward to
see that ⊕

λ:〈u,mu〉
S−→∗qf

`(λ) =
⊕

λ:〈u,mu〉
S−→∗qf

`(λ)

where λ and λ range over accepting runs of Cpost∗ and Cpost∗ respectively, and S
refines S. Then, given a superconfiguration c = 〈u, S〉, the extraction of d(R, c)
is done similarly to the configuration distance extraction, in O(|S| ·κ2 · θ2e) time.

Node distances. For node distances, the task is to compute d(R, u) =⊕
c=〈u,S〉 d(R, c) for every node u of R. This reduces to treating the automaton

Cpost∗ as a graph G, and solving a traditional single-source distance problem,
where the source set contains all states with old marks (i.e., old states that ap-
pear in the initial automaton C). This requires O(H · |Cpost∗ |) time for semirings
of height H. An informal argument for these bounds is to observe that G can
be itself encoded by a SESE RSM RG with a single module, where the entry
represents the source set of nodes with old marks. Then, running ConfDist for
the corresponding semiring, we obtain a solution to the single-source distance
problem in the aforementioned times, as established in Theorem 1. Finally, com-
puting same-context node distances requires O(|R| · θ) time in total (i.e., for all
nodes). Hence, regardless of the semiring, all node distances can be computed
with no overhead, i.e., within the time bounds required for constructing the re-
spective configuration automaton Cpost∗ . The following theorem summarizes the
complexity bounds that we obtain for the various distance extraction problems.

Theorem 2 (Distance extraction). Let R be an RSM over a semiring of
height H and C an R-automaton with κ marks. After O(H · |R| · θe · θx · κ3)
preprocessing time

1. configuration and superconfiguration distance queries 〈u, S〉 are answered in
O(|S| · θ2e · κ2) time;

2. node distance queries are answered in O(1) time.

4.2 Distances over Semirings with Small Domain

We now turn our attention to configuration and superconfiguration distance ex-
traction for the case of semirings with small domains D. Such semirings express
a range of important problems, with reachability being the most well-known
(expressed on the Boolean semiring with |D| = 2). We harness algorithmic ad-
vancements on the matrix-vector multiplication problem and Four-Russians-style
algorithms to obtain better bounds on the distance extraction problem.

Recall that given a box b, the configuration automaton Cpost∗ has at most
(θe · κ)2 transitions labeled with b . Such transitions can be represented by a
matrix Ab ∈ D(θe·κ)×(θe·κ). Additionally, for every internal node u we have one
matrix Au ∈ D(κ)×(θe·κ) that captures the weights of all transitions of the form

18

〈u,mu〉
ε−→ 〈e,me〉. Then, answering a configuration distance query 〈u, S〉 with

S = b1, . . . , b|S| amounts to evaluating the expression

1κ ·Au ·Ab1 · · ·Ab|S| · 1
>
κ·θe (2)

where 1z is a row vector of 1s and size z, ·> denotes the transpose, and matrix
multiplication is taken over the semiring. The situation is similar in the case of
superconfiguration distances, where we have one matrix AM,M′ for each pair of
modules M, M′ such that M invokes M′.

Evaluating equation (2) from left to right (or right to left) yields a sequence of
matrix-vector multiplications. The following two theorems use the results of [24]
and [38] on matrix-vector multiplications to provide a speedup on the distance
extraction problem when the semiring has constant size |D| = O(1).

Theorem 3 (Mailman’s speedup [24]). Let R be an RSM over a semiring
of constant size, and C an R-automaton with κ marks. After O(|R| · θe · θx · κ3)
preprocessing time, configuration and superconfiguration distance queries 〈u, S〉
are answered in O

(
|S| · θ2e ·κ

2

log(θe·κ)

)
time.

Theorem 4 (Williams’s speedup [38]). Let R be an RSM over a semiring
of size |D|, and C an R-automaton with κ marks. For any fixed ε > 0, let
X = |R| · θe · θx · κ3 and Z = |R| · κ · (θe · κ)1+ε log2 |D|. After O(max(X,Z))
preprocessing time, configuration and superconfiguration distance queries 〈u, S〉
are answered in O

(
|S| · θ2e ·κ

2

ε2·log2(θe·κ)

)
time.

Finally, using the Four-Russians technique for parsing on non-deterministic
automata [27], we obtain the following speedup for the case of reachability. We
note that although the alphabet is not of constant size (i.e., the number of
boxes is generally non-constant) this poses no overhead, as long as comparing
two boxes for equality requires constant time (which is the case in the standard
RAM model).

Theorem 5 (Four-Russians speedup [27]). Let R be an RSM over a binary
semiring, and C an R-automaton with κ marks. After O(|R| · θe · θx · κ3) pre-
processing time, configuration and superconfiguration distance queries 〈u, S〉 are

answered in O
(
|R| · θe · κ2 · |S|

log(|S|)

)
time.

4.3 A Speedup for Sparse RSMs

We call an RSM R sparse if there is a constant bound r such that for all modules
Mi we have |{Yi(b) | b ∈ Bi}| ≤ r i.e., every module invokes at most r other
modules (althoughMi can have arbitrarily many boxes). Typical call-graphs of
most programs are very sparse, e.g., typical call graphs of thousands of nodes
have average degree at most eight [8,30]. Hence, an RSM modeling a typical
program is expected to comprise thousands of modules, while the average mod-
ule invokes a small number of other modules. Although this does not imply a

19

constant bound on the number of invoked modules, such an assumption provides
a good theoretical basis for the analysis of typical programs.

Our goal is to provide a speedup for extracting superconfiguration distances
w.r.t. a sparse RSM. This is achieved by an additional polynomial-time prepro-
cessing, which then allows to process a distance query in blocks of logarithmic
size, and thus offers a speedup of the same order.

Given an RSM R of k modules and an integer z, there exist at most k · rz
valid module sequences M1 . . . ,Mz+1 which can appear as a substring in a
module sequence S which is refined by some stack S. Recall the definition of
the matrices AM,M′ ∈ D(θe·κ)×(θe·κ) from Section 4.2. For every valid sequence
of z + 1 modules s = M1 . . . ,Mz+1, we construct a matrix As = AM1,M2

·
AM2,M3

· . . . AMz,Mz+1
in total time

k · (θe · κ)ω
z∑
i=1

ri = O
(
|R| · θω−1e κω · rz

)
(3)

where (θe ·κ)ω = Ω(θ2 ·κ2) is time require to multiply two D(θe·κ)×(θe·κ) matrices
(currently ω ' 2.372, due to [39]).

Observe that as long as z = O(log |R|), there are polynomially many such
sequences s, and thus each one can be indexed in O(1) time on the standard
RAM model. Then a superconfiguration distance query 〈u, S〉 can be answered

by grouping S in d |S|z e blocks of size z each, and for each such block s multiply
with matrix As.

Theorem 6 (Sparsity speedup). Let R be a sparse RSM over a semiring of
height H, and C an R-automaton with κ marks. Let X = H · |R| · θe · θx · κ3,
and given an integer parameter x = O(poly |R|), let Z = |R| · θω−1e κω · x. After
O(max(X,Z)) preprocessing time, superconfiguration distance queries 〈u, S〉 are

answered in O
(
|S| ·

⌈
θ2e ·κ

2

log x

⌉)
time.

By varying the parameter z, Theorem 6 provides a tradeoff between pre-
processing and query times. Finally, the presented method can be combined
with the preprocessing on constant-size semirings of Section 4.2 which leads to a
Θ(log z) factor improvement on the query times of Theorem 3, Theorem 4, and
Theorem 5.

5 Context-Bounded Reachability in Concurrent
Recursive State Machines

Context bounding, i.e., limiting the number of context switches considered dur-
ing state space exploration, is an effective technique for systematic analysis of
concurrent programs. The context-bounded reachability problem in concurrent
pushdown systems has been studied in [28]. In this section we phrase the context-
bounded reachability problem over concurrent RSMs and show that the pro-
cedure of [28] using our algorithm ConfDist together with the results of the

20

previous sections give a better time complexity for the problem. As the section
follows closely the well-known framework of concurrent pushdown systems [28],
we keep the description brief.

Concurrent RSMs. A concurrent RSM (CRSM) R‖ is a collection of RSMs
Ri equipped with a finite set of global states G used for communication between
the RSMs. To this end, the semantics of RSMs is lifted to Ri-configurations
of the form 〈g, ui, Si〉, carrying an additional global state g ∈ G. Then, a global
configuration of R‖ is a tuple 〈g, 〈u1, S1〉, . . . , 〈un, Sn〉〉, where 〈g, ui, Si〉 are con-
figurations of Ri, respectively. The semantics of R‖ over global configurations
is the standard interleaving semantics, i.e., in each step some RSM Ri modifies
the global state and its local configuration, while the local configuration of every
other RSM remains unchanged.

Context-bounded reachability. For a positive natural number k and a fixed
initial global configuration c, the k-bounded reachability problem asks for all
global configurations c′ such that there is a computation from c to c′ that switches
control between RSMs at most k − 1 times.

An algorithm for context-bounded reachability. The procedure of [28] for
solving the k-bounded reachability problem for concurrent pushdown systems
(CPDSs) systematically performs post∗ operations on the reachable configu-
ration set of every constituent PDS, while capturing all possible interleavings
within k context switches. The k-bounded reachability problem for CRSMs can
be solved with an almost identical procedure, replacing the black-box invoca-
tions of the PDS reachability algorithm of [36] with our algorithm ConfDist.
However, using our algorithm for each post∗ operation, we obtain a complexity
improvement over the method of [28].

Key complexity improvement. The key advantage of our algorithm as com-
pared to [28] is as follows: in the algorithm of [28], in each iteration the configura-
tion automata, used to represent the reachable configurations of each component
RSM, grows by a cubic term; in contrast, replacing with our algorithm the con-
figuration automata grows only by a linear term in each iteration. This comes
from the fact that in our configuration automata every state corresponds to a
node of the RSM, whereas such strong correspondence does not hold for the
configuration automata of [28].

Theorem 7. For a concurrent RSM R‖, and a bound k, the procedure of [28,
Figure 2] using ConfDist for performing post∗ operations correctly solves the

k-bounded reachability problem and requires O(|R‖| · θ||e · θ||x · nk · |G|k+2) time.

Compared to Theorem 7, solving the CRSM problem by translation to a CPDS

and using the algorithm of [28] gives the bound O(|R‖|5 · θ|| 5x · nk · |G|k). Con-
versely, solving the CPDS problem by translation to a CRSM and using our
algorithm gives an improvement by a factor Ω(|P‖|3/|G|2). We refer to Ap-
pendix D for a detailed discussion.

21

6 Experimental Results

In this section we empirically demonstrate the algorithmic improvements
achieved by our RSM-based algorithm over existing PDS-based algorithms on
interprocedural program analysis problems. The main goal is to demonstrate
the improvements in algorithmic ideas rather than implementation details and
engineering aspects. In particular, we implemented our algorithm ConfDist in
a prototype tool and compared its efficiency against jMoped [1], which imple-
ments the algorithms of [36,34] and is a leading tool for the analysis of weighted
pushdown systems. In all cases we used an explicit representation of data valu-
ations on the nodes of RSMs, as opposed to a symbolic semiring representation.
All experiments were run on a machine with an Intel Xeon CPU and a memory
limit of 80GB. We first present our result on a synthetic example to verify the
algorithmic improvements on a constructed family, and then present results on
real-world benchmarks.

6.1 A Family of Dense RSMs

0 50 100 150 200

0

100

200

300

400

n = θe = θx

S
p

ee
d

u
p

Fig. 4. Speedup of our algorithm over the al-
gorithms of [36,34] implemented by jMoped on
the RSM family Rn.

For our first experiments we con-
structed a family of dense RSMs
that can be scaled in size. The
purpose of this experiments is to
verify that (i) our algorithm in-
deed achieves a speedup over the
algorithms of [36,34], and (ii) the
speedup scales with the size of
the input to ensure that improve-
ments on real-world benchmarks
are not due to implementation de-
tails, such as the used data types.
Let Rn be a single-module RSM
that consists of n entries and n ex-
its, and a single box which makes
a recursive call. The transition re-
lation is δ = (En × (Call ∪ Ex)) ∪
(Ret × Ex), i.e., every entry node
connects to every call and exit
node, and every return node con-
nects to every exit node. Hence
|Rn| = n2. The transition weights are irrelevant, as we will focus on reacha-
bility. The initial configuration automaton C contains a single entry state. We
considered Rn with n in the range from 10 to 200. For each RSM, we used
the standard translation to a PDS [4], and then applied our tool and jMoped
to compute a configuration automaton that represents post∗(L(C)). Figure 4
depicts the obtained speedup, which scales linearly with n. We have also exper-
imented with other similar synthetic RSMs with different means of scaling; and

22

in all cases the obtained speedups have the same qualitative behavior. This con-
firms the theoretical algorithmic improvements of our algorithm on the synthetic
benchmarks.

6.2 Boolean Programs from SLAM/SDV

Benchmarks. For our second experiments we used the collection of Boolean pro-
grams distributed as part of the SLAM/SDV project [6,7]. These programs are
the final abstractions in the verification of Windows device drivers, and thus they
represent RSMs obtained from real-world programs. From the Boolean programs
we obtained RSMs where every node represents a control location together with
a valuation of Boolean variables, and call/entry and exit/return nodes model
the parameter passing between functions. Thus, the RSMs are naturally multi-
entry-multi-exit. Overall we obtained 73 RSMs, which correspond to the largest
Boolean programs possible to handle explicitly.

Evaluation. To ensure a fair performance comparison, we applied two prepro-
cessing steps to the benchmark RSMs.
– First, to ensure that both tools compute the same result without any po-

tential unnecessary work, we restricted the state space of the RSMs to the
interprocedurally reachable states.

– Second, to focus on the performance of interprocedural analysis, we elimi-
nated all internal nodes by computing the intraprocedural transitive closure
within every RSM module.

The above two transformations ensure preprocessing steps like removal of un-
reachable states and intraprocedural analysis is already done, and we compare
the interprocedural algorithmic aspects of the algorithms. For each RSM, we used
the standard translation to a PDS [4], and then applied our tool and jMoped to
compute a configuration automaton that represents post∗(L(C)), where C is an
initial configuration automaton that contains the entry states of the main mod-
ule. Table 3 shows for every benchmark the number of RSM transitions (Trans.),
their ratio to nodes (D), the runtime for computing the intraprocedural transi-
tive closure (TC), the runtime of jMoped (jMop), the runtime of our tool (Ours),
and the speedup our tool achieved over jMoped (SpUp).

Out tool clearly outperforms jMoped on every benchmark, with speedups
from 3.94 up to 28.48. The runtimes of our tool range from 0.13 to 33.96 seconds,
while the runtimes of jMoped range from 1.03 to 950.82 seconds. Thus, our
experiments show that also for real-world examples our algorithm successfully
exploits the structure of procedural programs preserved in RSMs. This shows
the potential of our algorithm for building program analysis tools.

Note that the benchmark RSMs are quite large, with millions of nodes and
transitions, which even a basic implementation of our algorithm handled quite
efficiently. Moreover, in our experiments we observed that our tool uses consid-
erably less memory than jMoped. While we set 80GB as the memory limit, the
peak memory consumption of jMoped was 72GB, whereas our tool solved all
benchmarks with less than 32GB memory.

23

Trans. D TC jMop Ours SpUp
1 246,101 1.9 1.18 1.10 0.28 3.94
2 216,021 0.8 0.70 1.03 0.26 3.96
3 593,041 1.5 1.05 2.05 0.49 4.19
4 1,043,217 1.2 3.01 4.67 1.11 4.20
5 329,088 1.4 1.41 1.43 0.34 4.24
6 10,281,149 3.0 11.36 52.00 10.61 4.90
7 908,092 1.7 2.04 3.31 0.65 5.08
8 969,388 2.2 2.00 33.71 6.60 5.11
9 298,126 1.5 0.68 1.31 0.25 5.23

10 1,780,776 1.3 5.82 6.44 1.20 5.35
11 163,853 1.4 0.33 1.03 0.19 5.35
12 205,608 1.0 0.50 4.62 0.86 5.36
13 28,568,561 1.7 23.21 102.54 18.82 5.45
14 21,911,277 1.8 15.79 80.41 14.64 5.49
15 2,453,881 1.5 4.54 9.57 1.72 5.55
16 5,833,574 1.8 6.97 21.14 3.80 5.56
17 332,768 0.8 0.77 2.28 0.41 5.59
18 1,782,697 1.3 5.79 6.70 1.20 5.60
19 246,127 1.9 1.31 1.36 0.24 5.63
20 21,648,560 1.8 15.50 79.45 14.01 5.67
21 7,033,834 2.1 8.23 23.97 4.21 5.70
22 28,944,391 1.7 24.26 105.00 18.15 5.78
23 464,004 1.7 0.75 2.17 0.37 5.83
24 424,916 1.6 1.20 2.94 0.49 5.96
25 22,186,326 1.6 17.77 63.27 10.56 5.99
26 11,719,007 5.2 20.36 52.29 8.55 6.11
27 2,989,001 1.4 3.55 11.04 1.80 6.12
28 1,952,647 1.3 3.83 7.98 1.30 6.13
29 7,970,359 3.2 4.04 30.16 4.70 6.42
30 682,435 2.1 2.14 4.88 0.76 6.42
31 9,480,799 4.9 17.23 44.34 6.77 6.55
32 845,867 2.4 1.59 3.22 0.48 6.67
33 953,420 3.1 1.22 4.51 0.67 6.77
34 1,205,731 2.0 3.31 4.68 0.68 6.84
35 754,270 1.7 4.25 22.28 3.23 6.90
36 1,463,749 2.0 2.38 6.10 0.88 6.95
37 434,884 5.8 6.85 1.90 0.27 7.10

Trans. D TC jMop Ours SpUp
38 14,473,411 1.5 9.68 53.38 7.49 7.13
39 11,616,241 3.3 19.59 42.73 5.54 7.71
40 300,401 2.6 0.74 1.05 0.14 7.79
41 1,916,064 2.3 3.38 10.83 1.39 7.80
42 216,070 1.7 0.56 1.37 0.17 7.83
43 1,293,130 2.3 2.06 5.44 0.69 7.92
44 8,364,920 2.1 6.31 32.95 4.09 8.05
45 18,733,065 4.9 10.84 62.14 7.63 8.15
46 5,373,059 6.4 8.66 18.20 2.17 8.38
47 1,342,348 1.6 4.75 5.02 0.58 8.73
48 779,369 7.2 1.94 6.73 0.77 8.75
49 18,812,123 4.9 8.87 63.86 6.99 9.14
50 40,025,428 6.3 36.49 310.16 33.07 9.38
51 2,503,668 15.3 21.53 10.17 1.08 9.44
52 40,084,249 6.2 36.37 320.70 33.96 9.44
53 4,852,736 6.5 4.14 17.68 1.83 9.64
54 18,520,461 5.4 8.96 60.24 6.21 9.69
55 6,796,783 7.0 9.78 21.33 2.16 9.87
56 40,026,391 6.3 35.69 327.66 33.05 9.91
57 805,305 4.7 1.66 8.14 0.80 10.17
58 4,532,440 26.4 7.49 33.46 3.15 10.61
59 18,374,693 5.8 8.99 60.54 5.52 10.96
60 1,284,096 5.9 1.53 48.54 4.39 11.05
61 3,862,954 6.3 3.44 12.94 1.14 11.38
62 52,269,131 3.4 44.45 177.98 15.53 11.46
63 130,721 2.2 0.43 1.55 0.13 11.52
64 545,063 16.4 6.88 2.27 0.16 13.85
65 545,046 16.4 6.78 2.17 0.15 14.04
66 829,090 12.3 9.60 3.40 0.24 14.17
67 63,918,783 267.0 115.87 244.01 16.00 15.25
68 20,382,912 3.3 15.78 76.69 4.80 15.98
69 29,689,784 6.2 11.18 120.82 7.16 16.88
70 2,619,392 5.2 3.48 660.92 31.62 20.90
71 2,575,360 5.7 3.03 589.87 25.69 22.96
72 2,639,872 5.0 3.17 816.08 29.93 27.27
73 2,691,072 4.5 3.43 950.82 33.39 28.48

Table 3. Comparison of our tool against jMoped. Runtimes are given in seconds. The
names of all benchmarks are given in Appendix E.

6.3 Discussion

In our experiments we compared the implementation of our algorithm with
jMoped on sequential RSM analysis in an explicit setting. While our algorithm
can be made symbolic in a straightforward way (see Appendix B), a symbolic
implementation and efficiency for large symbolic domains involve significant en-
gineering efforts. Moreover, the main goal of our work is to compare the algo-
rithmic improvements over the existing approaches, which is best demonstrated
in an explicit setting, since in the explicit setting the improvements are algorith-
mic rather than due to implementation details of symbolic data-structures. Our
experimental results show the potential of the new algorithmic ideas, and inves-
tigating the applicability of them with a symbolic implementation is a subject
of future work.

24

7 Related Work

Sequential setting. Pushdown systems are very well studied for interprocedu-
ral analysis [32,35,10]. While the most basic problem is reachability, the weighted
pushdown systems (i.e., pushdown systems enriched with semiring) can express
several basic dataflow properties, and other relevant problems in interprocedu-
ral program analysis [34,21,33,19]. Hence weighted pushdown systems have been
studied in many different contexts, such as [35,32,16,12], and tools have been
developed, such as Moped [2], jMoped [1], and WALi [3]. The more convenient
model of RSMs was introduced and studied in [4], which on the one hand explic-
itly models the function calls and returns, and on the other hand specifies many
natural parameters for algorithmic analysis. In this work, we improve the fun-
damental algorithms for RSMs over finite-height semirings, as compared to the
bounds obtained by translating RSMs to pushdown systems and applying the
best-known bounds for the pushdown case. Along with general RSMs, special
cases of SESE RSMs have also been considered, such as RSMs with constant
treewidth, and only same context queries [11] (i.e., computation of node dis-
tances between nodes of the same module). Our results apply to the general
case of all RSMs and are not restricted to any special types of queries.

Concurrent setting. The problem of reachability in concurrent pushdown sys-
tems (or concurrent RSMs) is again a fundamental problem in program analysis,
which allows for the interprocedural analysis in a concurrent setting. However,
the problem is undecidable [31]. Motivated by practical problems, where bugs are
discovered with few context switches, the context-bounded reachability problem,
where there can be at most k context switches have been considered for concur-
rent pushdown systems [28,25,26,22,20] as well as related models of asynchronous
pushdown networks [9]. We present a new algorithm for concurrent pushdown
systems and concurrent RSMs which improves the existing complexity when the
size of the global component is small.

8 Conclusion

In this work we consider RSMs, a fundamental model for interprocedural analy-
sis, with path properties expressed over finite-height semirings, that can express
a large class of properties for program analysis. We present algorithms that im-
prove the previous algorithms, both in the sequential as well as in the concurrent
setting. Moreover, along with our algorithm, we present new methods to extract
distances from the data-structure (configuration automata) that the algorithm
constructs. We present a prototype implementation for sequential RSMs in an
explicit setting that provides significant improvements for real-world programs
obtained from SLAM/SDV benchmarks. Our results show the potential of the
new algorithmic ideas. There are several interesting directions of future work.
A symbolic implementation is a direction for future work. Another direction of
future work is to explore the new algorithmic ideas in the concurrent setting in
practice.

25

Acknowledgments. This research was supported in part by the Austrian
Science Fund (FWF) under grants S11402-N23, S11407-N23, P23499-N23, and
Z211-N23, and by the European Research Council (ERC) under grant 279307.

References

1. jMoped 2.0. https://www7.in.tum.de/tools/jmoped/.
2. Moped. http://www2.informatik.uni-stuttgart.de/fmi/szs/tools/moped/.
3. WALi. https://research.cs.wisc.edu/wpis/wpds/.
4. Rajeev Alur, Michael Benedikt, Kousha Etessami, Patrice Godefroid, Thomas W.

Reps, and Mihalis Yannakakis. Analysis of Recursive State Machines. ACM Trans.
Program. Lang. Syst., 27(4), 2005.

5. Rajeev Alur, Ahmed Bouajjani, and Javier Esparza. Model Checking Procedural
Programs. In Handbook of Model Checking. Springer, 2016.

6. Thomas Ball, Ella Bounimova, Vladimir Levin, Rahul Kumar, and Jakob Lichten-
berg. The static driver verifier research platform. In CAV, 2010.

7. Thomas Ball and Sriram K. Rajamani. Bebop: A symbolic model checker for
boolean programs. In SPIN, 2000.

8. Pamela Bhattacharya, Marios Iliofotou, Iulian Neamtiu, and Michalis Faloutsos.
Graph-based analysis and prediction for software evolution. In ICSE, 2012.

9. Ahmed Bouajjani, Javier Esparza, Stefan Schwoon, and Jan Strejček. Reachability
analysis of multithreaded software with asynchronous communication. In FSTTCS,
2005.

10. David Callahan, Keith D. Cooper, Ken Kennedy, and Linda Torczon. Interproce-
dural constant propagation. In CC, 1986.

11. Krishnendu Chatterjee, Rasmus Ibsen-Jensen, Andreas Pavlogiannis, and Prateesh
Goyal. Faster algorithms for algebraic path properties in recursive state machines
with constant treewidth. In POPL, 2015.

12. Swarat Chaudhuri. Subcubic algorithms for recursive state machines. In POPL,
2008.

13. P. Cousot and R Cousot. Static determination of dynamic properties of recursive
procedures. In IFIP Conf. on Formal Description of Programming Concepts, 1977.

14. Robert Giegerich, Ulrich Möncke, and Reinhard Wilhelm. Invariance of approxi-
mate semantics with respect to program transformations. In ECI, 1981.

15. Dan Grove and Linda Torczon. Interprocedural constant propagation: A study of
jump function implementation. In PLDI, 1993.

16. Susan Horwitz, Thomas Reps, and Mooly Sagiv. Demand interprocedural dataflow
analysis. SIGSOFT Softw. Eng. Notes, 1995.

17. Jens Knoop and Bernhard Steffen. The interprocedural coincidence theorem. In
CC, 1992.

18. Jens Knoop, Bernhard Steffen, and Jürgen Vollmer. Parallelism for free: Efficient
and optimal bitvector analyses for parallel programs. ACM Trans. Program. Lang.
Syst., 1996.

19. Akash Lal and Thomas W. Reps. Solving Multiple Dataflow Queries Using WPDSs.
In SAS, 2008.

20. Akash Lal and Thomas W. Reps. Reducing concurrent analysis under a context
bound to sequential analysis. Formal Methods in System Design, 35(1), 2009.

21. Akash Lal, Thomas W. Reps, and Gogul Balakrishnan. Extended weighted push-
down systems. In CAV, 2005.

26

https://www7.in.tum.de/tools/jmoped/
http://www2.informatik.uni-stuttgart.de/fmi/szs/tools/moped/
https://research.cs.wisc.edu/wpis/wpds/

22. Akash Lal, Tayssir Touili, Nicholas Kidd, and Thomas W. Reps. Interprocedural
analysis of concurrent programs under a context bound. In TACAS, 2008.

23. William Landi and Barbara G. Ryder. Pointer-induced aliasing: A problem classi-
fication. In POPL, 1991.

24. Edo Liberty and Steven W. Zucker. The mailman algorithm: A note on matrix–
vector multiplication. Inf. Process. Lett., 109(3), 2009.

25. Madanlal Musuvathi and Shaz Qadeer. Iterative context bounding for systematic
testing of multithreaded programs. In PLDI, 2007.

26. Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gérard Basler, Pira-
manayagam Arumuga Nainar, and Iulian Neamtiu. Finding and reproducing
heisenbugs in concurrent programs. In OSDI, 2008.

27. Gene Myers. A four russians algorithm for regular expression pattern matching.
J. ACM, 39(2), 1992.

28. Shaz Qadeer and Jakob Rehof. Context-Bounded Model Checking of Concurrent
Software. In TACAS, 2005.

29. Shaz Qadeer and Dinghao Wu. KISS: Keep It Simple and Sequential. In PLDI,
2004.

30. Yu Qu, Xiaohong Guan, Qinghua Zheng, Ting Liu, Jianliang Zhou, and Jian Li.
Calling network: A new method for modeling software runtime behaviors. ACM
SIGSOFT Software Engineering Notes, 40(1):1–8, 2015.

31. G. Ramalingam. Context-sensitive synchronization-sensitive analysis is undecid-
able. ACM Trans. Program. Lang. Syst., 22(2), 2000.

32. Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural dataflow
analysis via graph reachability. In POPL, 1995.

33. Thomas W. Reps, Akash Lal, and Nicholas Kidd. Program analysis using weighted
pushdown systems. In FSTTCS, 2007.

34. Thomas W. Reps, Stefan Schwoon, Somesh Jha, and David Melski. Weighted
Pushdown Systems and Their Application to Interprocedural Dataflow Analysis.
Sci. Comput. Program., 58(1-2), 2005.

35. Mooly Sagiv, Thomas Reps, and Susan Horwitz. Precise interprocedural dataflow
analysis with applications to constant propagation. Theor. Comput. Sci., 1996.

36. Stefan Schwoon. Model-Checking Pushdown Systems. Ph.D. Thesis, Technische
Universität München, 2002.

37. Dejvuth Suwimonteerabuth, Javier Esparza, and Stefan Schwoon. Symbolic
Context-Bounded Analysis of Multithreaded Java Programs. In SPIN, 2008.

38. Ryan Williams. Matrix-Vector Multiplication in Sub-Quadratic Time (Some Pre-
processing Required). In SODA, 2007.

39. Virginia Vassilevska Williams. Multiplying matrices faster than Coppersmith-
Winograd. In STOC, 2012.

27

A Proofs of Section 3

Proposition 3. At all times, every run in the automaton contains at most
one transition switching from the fresh mark to an old mark, and no transi-
tion switching from an old mark to the fresh mark. Furthermore, every accepting
run has to end in a state with an old mark.

Lemma 1 (Completeness). For every configuration c we have Cpost∗(c) v
d(L(C), c).

Proof. First we show that for every initialized computation π : 〈u, S〉 =⇒∗ 〈u′, S′〉
there is a run

t1︷ ︸︸ ︷
λ : 〈u′,mu′〉

ε−→ 〈e,me〉
S′−→∗ qf

accepting 〈u′, S′〉 such that (1) ⊗(λ) v ⊗(π), and (2) t1 was added to the
worklist. We proceed by induction on the length of π. Part (2) of the induction
hypothesis is used to argue that t1 will be extracted with its final weight at some
point in the algorithm. We do not explicitly prove this part below since it is an
obvious consequence of the steps in the algorithm we refer to in order to prove
part (1).

As a base case, if |π| = 0 then u = u′, S = S′, and ⊗(π) = 1. Since
〈u, S〉 ∈ L(C) there must be a C-run λ accepting 〈u, S〉, and since all transitions
in the initial automaton have weight 1 we have ⊗(λ) = 1.

For the induction step, if |π| > 0 there is a configuration 〈u1, S1〉 such that

π : 〈u, S〉 =⇒∗ 〈u1, S1〉︸ ︷︷ ︸
π1

=⇒ 〈u′, S′〉.

By applying the induction hypothesis to π1 we obtain an accepting run

t1︷ ︸︸ ︷
λ1 : 〈u1,mu1〉

ε−→ 〈e,me〉
S1−→∗ qf︸ ︷︷ ︸

λ′1

such that
⊗(λ1) = ⊗(λ′1)⊗ `(t1) v ⊗(π1).

Let Mi be the module of u1. We split cases according to the type of the last
transition of π.

1. Internal transition: u′ ∈ Ini, 〈u1, u′〉 ∈ δi, and S′ = S1. We consider the
iteration of the main loop where t1 is extracted from WL with its final weight.
Line 9 relaxes the transition t = 〈u′, m̂〉 ε−→ 〈e,me〉 with `(t1) ⊗ wi(u1, u′)
and hence

`(t) v `(t1)⊗ wi(u1, u′).

28

By combining t and λ′1 we obtain the accepting run

λ : 〈u′, m̂〉 ε−→ 〈e,me〉
S′−→∗ qf

and we derive

⊗(λ) = ⊗(λ′1)⊗ `(t)
v ⊗(λ′1)⊗ `(t1)⊗ wi(u1, u′)
v ⊗(π1)⊗ wi(u1, u′)
= ⊗(π).

2. Call transition: u′ = e′ ∈ EnYi(b) for some box b ∈ Bi, 〈u1, 〈b, e′〉〉 ∈ δi, and
S′ = bS1.
Again, we consider the iteration of the main loop where t1 is extracted from

WL with its final weight. Line 11 relaxes the transition t = 〈e′, m̂〉 b−→ 〈e,me〉
with `(t1)⊗ wi(u1, 〈b, e′〉) and hence

`(t) v `(t1)⊗ wi(u1, 〈b, e′〉).

By combining t and λ′1 we obtain the accepting run

λ : 〈e′, m̂〉 ε−→ 〈e′, m̂〉 b−→ 〈e,me〉
S′−→∗ qf

and we derive

⊗(λ) = ⊗(λ′1)⊗ `(t)
v ⊗(λ′1)⊗ `(t1)⊗ wi(u1, 〈b, e′〉)
v ⊗(π1)⊗ wi(u1, 〈b, e′〉)
= ⊗(π).

3. Return transition: u′ = 〈b, x〉 ∈ Ri for some b ∈ Bi and x ∈ ExYi(b), 〈u1, x〉 ∈
δYi(b), and S1 = bS′. First note that

⊗(π1) = ⊗(π).

We consider the iteration of the main loop, where tC = 〈u3,mu3〉
ε−→ 〈e,me〉 is

the transition extracted from WL such that the if-condition sum(〈e,me〉, x) 6v
`(tC) in line 14 holds for the last time. Then `(tC) v `(t1) and since line 15
relaxes sum(〈e,me〉, x) with `(tC) we have

sum(〈e,me〉, x) v `(t1).

Now observe that we must have

t2︷ ︸︸ ︷
λ′1 : 〈e,me〉

b/v−−→ 〈e2,me2〉
S′−→∗ qf .︸ ︷︷ ︸

λ′′1

29

We distinguish whether the transition t2 already had weight v in the current
iteration of processing tC or not. If yes, then line 17 in the current iteration, if
no, then line 21 in the later iteration where t2 is extracted with weight v from
WL, relaxes the transition t = 〈〈b, x〉, m̂〉 ε−→ 〈e2,me2〉 with v⊗sum(〈e,me〉, x)
and hence

`(t) v v ⊗ sum(〈e,me〉, x).

By combining t and λ′′1 we obtain the accepting run

λ : 〈〈b, x〉, m̂〉 ε−→ 〈e2,me2〉
S′−→∗ qf

and we derive

⊗(λ) = ⊗(λ′′1)⊗ `(t)
v ⊗(λ′′1)⊗ v ⊗ sum(〈e,me〉, x)

= ⊗(λ′1)⊗ sum(〈e,me〉, x)

v ⊗(λ′1)⊗ `(t1)

v ⊗(π1)

= ⊗(π).

In all cases we obtain the desired run λ accepting 〈u′, S′〉 with ⊗(λ) v ⊗(π).
Now the claim of the lemma follows, as

Cpost∗(c) =
⊕
λ∈Λ(c)

⊗(λ) v
⊕

π∈Π(L(C),c)

⊗(π) = d(L(C), c) (4)

were the inequality holds since, as shown above, the weight of any π is bounded
from below by the weight of a λ. ut

Lemma 4 (Soundness invariants). Algorithm ConfDist maintains the fol-
lowing loop invariants:

I1 The function sum maintains sound summaries, i.e., for every entry e ∈ Eni
and exit x ∈ Ex i of the same module Mi, and every box b ∈ Bj with Yj(b) =
i, there exists a set Π of computations π : 〈e, b〉 =⇒∗ 〈〈b, x〉, ε〉 such that⊕

(Π) = sum(〈e, m̂〉, x).

I2 For every run λ : 〈u2, m̂〉
S−→∗ 〈u1, m̂〉, there exists a set Π of computations

π : 〈u1, ε〉 =⇒∗ 〈u2, S〉, such that
⊕

(Π) = ⊗(λ).
I3 For every run λ accepting a configuration c there exists a set Π of initialized

computations ending in c, such that
⊕

(Π) = ⊗(λ).

Proof. Note that every accepting run has to end in a final state with an old
mark since we do not add final states to the automaton. Moreover, we recall that
Proposition 3 implies that every run contains at most one transition switching
from the fresh mark to an old mark, and no transition switching from an old
mark to the fresh mark.

30

Initially, the invariants hold due to the initialization steps of the algorithm.
Now we need to show that I1 is preserved by updates to the summary function

in line 15, and that I2 and I3 are preserved by all possible relaxations performed
in line 9, 11, 17, and 21.

Since all cases follow the similar pattern of applying the invariants to sub-
runs and combining the obtained sets of computations suitably, we only give the
details of one case for I3.

Consider the run

t︷ ︸︸ ︷
λ : 〈u2, m̂〉

S2−→∗ 〈e′, m̂〉 b/vt−−−→ 〈e,me〉
S1−→∗ qf︸ ︷︷ ︸ ︸ ︷︷ ︸

λ2 λ1

with me 6= m̂ and an iteration of the main loop where transition tC = 〈u,mu〉
ε−→

〈e,me〉 is extracted from WL and transition t is relaxed in line 11 due to a call
transition tR = 〈u, 〈b, e′〉〉.

We apply I3 to tC , λ1 to obtain a set of initialized computations ending in
〈u, S1〉. We extended each computation by tR to obtain the set Π ′1 of initialized
computations ending in 〈e′, bS1〉. We apply I3 to t, λ1 to obtain a set Π ′′1 of
initialized computations ending in 〈e′, bS1〉. We apply I2 to λ2 to obtain a set of
computations from 〈e′, ε〉 to 〈u2, S2〉. We lift the stack of each computation by
bS1 to obtain the set Π2 of computations from 〈e′, bS1〉 to 〈u2, S2bS1〉. Let Π be
the set of computations obtained by combining every computation in Π ′1 ∪Π ′′1
with every computation in Π2. Then Π is the desired set of initialized compu-
tations ending in 〈u2, S2bS1〉, such that

⊕
(Π) = ⊗(λ) after the relaxation of

t. ut

Lemma 2 (Soundness). For every configuration c we have d(L(C), c) v
Cpost∗(c).

Proof. Conversely to the inequality of equation (4) in the proof of Lemma 1we
derive

d(L(C), c) =
⊕

π∈Π(L(C),c)

⊗(π) v
⊕
λ∈Λ(c)

⊗(λ) = Cpost∗(c) (5)

were the inequality holds since, by invariant I3 from Lemma 4, the weight of any
λ is bounded from below by the weight of a Π ⊆ Π(L(C), c). ut

Lemma 3 (Complexity). Let κ be the number of distinct marks m ∈M of the
initial automaton C. Algorithm ConfDist constructs Cpost∗ in time O(H · (|R| ·
θe · κ2 + |Call | · θe · θx · κ3)), and Cpost∗ has O(|R| · θe · κ2) transitions.

Proof. We bound the number of times that each loop will be executed.
1. For a given node u, line 5 will be executed at most H · θe · (κ + 1)2 times.

We denote by outi(u), outc(u), outx(u) the number of internal, call, and exit
transitions from node u in δi of module Mi. For every iteration of line 4,
the following upper bounds on each inner loop are straightforward:

31

(a) Line 8: outi(u) times.
(b) Line 10: outc(u) times.
(c) Line 13: outx(u) times.
Hence for a given pair 〈u,m〉 the algorithm spends O(H · θe · (outi(u) +
outc(u) + outx(u)) · κ2) time in the above loops, and summing over all u we
obtain O(H · θe · |R| · κ2) time.

2. Given a pair of a state and an exit (〈e,me〉, x), Line 14 will hold true at
most H times. Summing over all possible such pairs, we obtain that Line 16
will be executed O(H · |Call | · θe · θx · κ3) times in total.

3. Finally, line 21 will be executed O(H · |Call | · θe · θx ·κ2) times in total, since

the total number of different edges of the form 〈e,me〉
b−→ 〈e′,me′〉 added

in the worklist is bounded by the number of call nodes that were used in
Line 10, times the maximum number of entries and exits in any module of
the RSM.

The desired result follows. ut

B Symbolic Extensions

Note that in our framework we deal with explicit RSMs, and our ConfDist

algorithm is also explicit. However, our results carry over to symbolic extensions
of RSMs, similar to symbolic PDS [5]. For the symbolic extension we describe
the symbolic extension of the model and our algorithm.
– Symbolic model. We consider the RSM to represent the control-flow structure

of a program (represented explicitly), and the semiring capturing valuations
on the variables (represented symbolically). The symbolic semiring opera-
tions express the value changes along the program execution. In general the
MEME RSMs can represent explicitly a combination of control-flow and
some Boolean variables.

– Symbolic algorithm. We observe that our algorithm for computation on the
semiring uses the basic semiring operations. Hence our algorithm can be
straightforwardly made symbolic on the semiring, and is only explicit on the
RSM structure.

C Proofs of Section 5

Theorem 7. For a concurrent RSM R‖, and a bound k, the procedure of [28,
Figure 2] using ConfDist for performing post∗ operations correctly solves the

k-bounded reachability problem and requires O(|R‖| · θ||e · θ||x · nk · |G|k+2) time.

Proof. The algorithm of [28, Figure 3] for concurrent RSMs basically calls al-
gorithm for sequential RSMs as a black-box procedure. Using our algorithm
ConfDist we obtain an algorithm for concurrent RSM, and the correctness fol-
lows from [28] and Theorem 1.

We now sketch the complexity analysis. By Theorem 1, every execution of the
algorithm ConfDist increases the number of marks of the input configuration

32

automaton by 1. In the i-th iteration of [28, Figure 3] the algorithm will perform
a post∗ operation on a configuration automaton of i marks, which by Theorem 1
will require O(|R| · |G|2 · θe · θx · i3) time. Each such iteration will spawn n · |G|
iterations in the inner loop of [28, Figure 3], one for each component RSM (among
n components) and state of the global component (among |G| possible states).
Then the total time is (up to constant factors)

|R| · |G|2 · θe · θx ·
k∑
i=1

i3 · (n · |G|)i = O
(
|R| · |G|2 · θe · θx · (n · |G|)k

)
The desired result follows. ut

D Comparison with existing work on k-bounded
reachability

We compare our results for CPDSs, CRSMs, and the related model of asyn-
chronous pushdown networks (APNs).

Comparison for CPDSs. As shown in [28], the k-bounded reachability prob-
lem in a CPDS P‖ can be solved in time

O(|P‖|5 · nk · |G|k).

The bisimulation relation of [4, Theorem 1] between PDSs and RSMs has a
straightforward extension to CPDSs and CRSMs. In particular:
1. Given a CPDS P‖ with n components and global set G, the k-bounded

reachability problem for P‖ can be reduced to the k-bounded reachability
problem for a CRSM R‖ with n components and global set G. Additionally,

|R‖| = Θ(|P‖|); θ||e = Θ(|Γ |) = O(|P‖|); θ||x = Θ(1)

2. Given a CRSM R‖ with n components and global set G, the k-bounded
reachability problem for R‖ can be reduced to the k-bounded reachability
problem for a CPDS P‖ with n components and global set G. Additionally,

|P‖| = Θ(|R‖| · θ||x);

It follows that our approach can solve the k-bounded reachability problem of a
CPDS P‖ in time

O(|P‖|2 · nk · |G|k+2).

Note that typically k is very small, (e.g. k = 2 in [29], k = 3 in [37]). However,
in real applications the size of G is typically smaller than |P‖|, e.g., when G
encodes only the synchronization variables among threads. Our algorithm gives
an improvement by a factor Ω(|P‖|3/|G|2).

Comparison for CRSMs. The naive upper bound for the k-bounded reach-
ability problem of a CRSM R‖ obtained using a modification of the standard

33

method of [4] to reduce it to the CPDS case, and then apply the algorithm of [28],

is O(|R‖|5 ·θ|| 5x ·nk · |G|k). In contrast, our bound is O(|R‖| ·θ||e ·θ||x ·nk · |G|k+2).

Comparison for APNs. The problem of k-bounded reachability has also
been studied in the closely related model of asynchronous pushdown networks
(APNs) [9]. Informally, the main difference of an APN from a CPDS is that in
the former case, the stacks have an additional set of local control states, different
from the common global finite control G. Hence APNs are more general than
CPDS. As shown in [9], the k-bounded reachability problem for an APN A‖ of n
components can be solved essentially in time O(nk · |G|k +n · |G|k+2 · |A‖|2 · |P |),
where P is the set of local control states. Since APNs are more general
than CPDSs, our previous analysis implies that the algorithm of [9] can be
used to solve the k-bounded reachability problem for a CRSM R‖ in time

O(nk ·|G|k+n·|G|k+2 ·|R‖|2 ·θ||x). This time is incomparable with what we obtain

from Theorem 7. When the number of entries θ
||
e and the number of components

n is constant, the algorithm presented in this work has a better complexity.

E Names of the Boolean programs used as benchmarks

All listed benchmarks belong to the “bebop-itp” collection.

1. src 7600 general toaster kmdf filter generic InvalidReqAccess
2. src 7600 general toaster wdm filter devupper PnpSurpriseRemove
3. src 7600 general event wdm MarkIrpPending2
4. src 7600 storage sfloppy PagedCode
5. src 7600 input kbfiltr sys InvalidReqAccess
6. src 7600 general toaster wdm toastmon PendedCompletedRequest
7. src 7600 general toaster wdm filter devupper CriticalRegions
8. src 7600 network ndis athwifi driver atheros Irql SendRcv Function
9. src 7600 general event wdm IrpProcessingComplete

10. src 7600 general toaster wdm func featured1 WmiForward
11. src 7600 general toaster wdm func featured1 IrqlKeWaitForSingleObject
12. src 7600 network ndis athwifi driver atheros Irql Timer Function
13. src 7600 general toaster wdm func featured1 IrqlIoPassive3
14. src 7600 general toaster wdm func featured2 IrqlIoApcLte
15. src 7600 general toaster wdm func featured2 WmiForward
16. src 7600 general ioctl kmdf sys InitFreeDeviceCreateType4
17. src 7600 general toaster wdm func incomplete2 IrqlReturn
18. src 7600 general pcidrv wdm hw WmiForward
19. src 7600 input moufiltr InvalidReqAccess
20. src 7600 general toaster wdm func featured2 IrqlIoPassive3
21. src 7600 general toaster kmdf filter sideband ControlDeviceInitAPI
22. src 7600 general toaster wdm func featured1 IrqlIoApcLte
23. src 7600 general toaster wdm func featured2 PnpSurpriseRemove
24. src 7600 general amcc5933 sys KmdfIrql
25. src 7600 general toaster wdm func incomplete1 IrpProcessingComplete

34

26. src 7600 general toaster wdm filter devupper PendedCompletedRequest
27. src 7600 general toaster wdm func incomplete1 TargetRelationNeedsRef
28. src 7600 general toaster wdm func incomplete2 TargetRelationNeedsRef
29. src 7600 general toaster wdm func featured1 PnpSurpriseRemove
30. src 7600 bth bthecho bthcli sys RequestFormattedValid
31. src 7600 general toaster wdm filter buslower PendedCompletedRequest
32. src 7600 input hiddigi wacompen MarkIrpPending
33. src 7600 general toaster wdm bus PnpSurpriseRemove
34. src 7600 general toaster kmdf bus static PdoInitFreeDeviceCreateType4
35. src 7600 network ndis athwifi driver atheros Irql IrqlSetting Function
36. src 7600 serial serenum IrqlIoApcLte
37. src 7600 hid hidusbfx2 sys SyncReqSend2
38. src 7600 general toaster wdm toastmon IrpProcessingComplete
39. src 7600 general toaster kmdf filter sideband ControlDeviceDeleted
40. src 7600 general cancel startio MarkIrpPending2
41. src 7600 general toaster wdm func featured2 IrqlKeSetEvent
42. src 7600 general toaster wdm func incomplete2 IrqlKeSetEvent
43. src 7600 serial serenum IrqlIoPassive3
44. src 7600 general toaster wdm filter devlower IrpProcessingComplete
45. src 7600 general toaster wdm func featured1 IrqlExAllocatePool
46. src 7600 general toaster wdm func featured2 CriticalRegions
47. src 7600 general toaster wdm bus MarkIrpPending2
48. src 7600 storage class cdrom WdfSpinlockRelease
49. src 7600 general toaster wdm func featured2 IrqlKeWaitForSingleObject
50. src 7600 network ndis xframeii sys ndis6 MandatoryOid
51. src 7600 general toaster kmdf filter sideband DeviceInitAllocate
52. src 7600 network ndis xframeii sys ndis6 NdisStallExecution Delay
53. src 7600 bth bthecho bthsrv sys InvalidReqAccessLocal
54. src 7600 general toaster wdm func featured2 IrqlKeApcLte2
55. src 7600 general toaster wdm bus IrqlIoPassive3
56. src 7600 network ndis xframeii sys ndis6 SpinlockRelease
57. src 7600 storage filters diskperf PnpIrpCompletion
58. src 7600 storage filters diskperf TargetRelationNeedsRef
59. src 7600 general toaster wdm func featured2 IrqlZwPassive
60. src 7600 hid hidusbfx2 hidmapper ForwardedAtBadIrql
61. src 7600 general pcidrv wdm hw DoubleCompletion
62. src 7600 serial serenum MarkIrpPending2
63. src 7600 general toaster wdm func incomplete2 MarkIrpPending2
64. src 7600 input moufiltr SyncReqSend2
65. src 7600 general toaster kmdf filter generic SyncReqSend2
66. src 7600 input kbfiltr sys SyncReqSend2
67. src 7600 input hiddigi wacompen SpinLock
68. src 7600 general toaster wdm filter devupper IrpProcessingComplete
69. src 7600 general pcidrv wdm hw IrqlIoPassive1
70. src 7600 general toaster wdm func incomplete1 ForwardedAtBadIrql

35

71. src 7600 general toaster wdm filter devlower ForwardedAtBadIrql
72. src 7600 general toaster wdm toastmon ForwardedAtBadIrql
73. src 7600 general toaster wdm filter devupper ForwardedAtBadIrql

36

	Faster Algorithms for Weighted Recursive State Machines

