

Institute of Science and Technology

Faster Algorithms for Weighted Recursive State Machines

Krishnendu Chatterjee **Bernhard Kragl** Samarth Mishra Andreas Pavlogiannis

Recursive State Machines (RSMs)

Formal model of recursive computation

Linearly equivalent to pushdown systems (PDSs)

Advantages:

- Natural modeling
- Many parameters
 - Number of modules f
 - Entry bound $\theta_e = \max_i |En_i|$
 - Exit bound $\theta_x = \max_i |Ex_i|$
 - $\theta = \max_{i} \min(|En_i|, |Ex_i|)$

$$\begin{split} \langle A, \varepsilon \rangle &\Rightarrow \langle E, b_1 \rangle \Rightarrow \langle A, b_2 b_1 \rangle \\ &\Rightarrow \langle B, b_2 b_1 \rangle \Rightarrow \langle \langle b_2, C \rangle, b_1 \rangle \\ &\Rightarrow \langle \langle b_1, G \rangle, \varepsilon \rangle \end{split}$$

RSMs over Semirings

Label RSM transitions with weights from idempotent semiring $\langle W, \bigoplus, \otimes, 0, 1 \rangle$ weight of computation: \otimes weight of computation set: \bigoplus

	W	\oplus	\otimes	0	1
Reachability	$\mathbb B$	V	٨	T	Т
Shortest path	$\mathbb{R}^+ \cup \{\infty\}$	min	+	∞	0
Most probable path	[0,1]	max	•	0	1
IFDS	$2^D \xrightarrow{d} 2^D$	П	ο	<i>λx</i> . T	$\lambda x. x$

Canonical partial order $a \le b \Leftrightarrow a \bigoplus b = a$

Monotonicity $a \le b \Rightarrow a \otimes c \le b \otimes c$

Finite-height: $H \in \mathbb{N}$ longest descending chain in \leq

Distance Problems

Given a set of initial configurations S

Configuration distance

 $d(S,\langle u,b_1\cdots b_n\rangle)$

- Superconfiguration distance $d(S, \langle u, \mathcal{M}_1 \cdots \mathcal{M}_n \rangle)$
- Node distance

d(S, u)

Our Solution

1. Configuration automata

Representation structures for sets of RSM configurations [BEM'97] Initial automaton C, s.t. $\mathcal{L}(C) = S$

- Dynamic programming algorithm
 Compute C*, representing reachable configurations and distances
 Key: Entry-to-Exit summaries [ABEGRY'05]
- 3. Distance extraction algorithms Query configuration/superconfiguration/node distances from C^{*}

Configuration Automata

 $\langle u, b \cdots \rangle$ is an accepted configuration Weight of configuration is \oplus over all accepting runs

Relaxation Steps

Internal transition: $u \xrightarrow{v_2} u'$

Exit transition: $u \rightarrow x$

$$u \xrightarrow{\varepsilon | v} e \xrightarrow{b | v_2} e' \xrightarrow{\varepsilon | \cdots} \\sum(e, x) \\ := \cdots \oplus v \qquad (b, x) \xrightarrow{\varepsilon | \cdots \oplus (v_2 \otimes sum(e, x))}$$

Call transition: $u \xrightarrow{v_2} \langle b, e' \rangle$

Using summary: sum(e', x)

Reachability Example

Correctness and Complexity

For every configuration $c: d(\mathcal{L}(C), c) = C^*(c)$

 C^* is constructed in time $\mathcal{O}(H \cdot (|\mathcal{R}| \cdot \theta_e + \theta_e \cdot \theta_x \cdot |Call|))$

Compared to PDS algorithm $\mathcal{O}(H \cdot |\mathcal{R}| \cdot \theta_e \cdot \theta_x \cdot f)$

Factor
$$\frac{|\mathcal{R}| \cdot f}{|\mathcal{A}|} + |Call|$$
 improvement

Empirical Evaluation

RSM-based algorithm vs. PDS-based algorithm Our tool jMoped

- 1. Scaling on artificial examples
- 2. Interprocedural program analysis problems

A Family of Dense RSMs

 \mathcal{R}_3 Speedup $\frac{|\mathcal{R}| \cdot f}{\binom{|\mathcal{R}|}{\theta_x} + |Call|} = \frac{n^2 \cdot 1}{\frac{n^2}{n} + n} = n$ $n = \theta_e = \theta_x$

Boolean Programs from SLAM/SDV

Absolute runtime (seconds)

Relative speedup

Our Solution

1. Configuration automata

Representation structures for sets of RSM configurations [BEM'97] Initial automaton C, s.t. $\mathcal{L}(C) = S$

- Dynamic programming algorithm
 Compute C*, representing reachable configurations and distances
 Key: Entry-to-Exit summaries [ABEGRY'05]
- 3. Distance extraction algorithms

Query configuration/superconfiguration/node distances from C^*

Distance Extraction

• Configuration distance for $\langle u, b_1 \cdots b_n \rangle$

Dynamic programming: $\mathcal{O}(n \cdot \theta_e^2)$

- Superconfiguration distance for $\langle u, \mathcal{M}_1 \cdots \mathcal{M}_n \rangle$ Replace $e \xrightarrow{b} e'$ with $e \xrightarrow{\mathcal{M}} e'$ where \mathcal{M} is module of e'
- Node distance

Traditional single-source distance problem

Distances over Small Semirings

$$\begin{array}{ccc} W^{\theta_e} \operatorname{vector} & W^{\theta_e \times \theta_e} \operatorname{matrix} \\ \mathcal{C}^* \operatorname{transitions} u \xrightarrow{\varepsilon} e & \mathcal{C}^* \operatorname{transitions} \operatorname{labeled} b_i \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & &$$

- Constant size semiring (Mailman's speedup) $O\left(n \cdot \frac{\theta_e^2}{\log \theta_e}\right)$
- Size |W| semiring (William's speedup) for $\varepsilon > 0$, $\mathcal{O}\left(n \cdot \frac{\theta_e^2}{\varepsilon^2 \log^2 \theta_e}\right)$

(some preprocessing)

• Binary semiring (Four-Russians speedup) $\mathcal{O}\left(|\mathcal{R}| \cdot \theta_e \cdot \frac{n}{\log n}\right)$

Summary

- Faster interprocedural analysis (RSM > PDS)
- Configuration automata

 → Saturation algorithm (summaries)
 → Distance extraction
- More in the paper
 - Further distance extraction speedups
 - Implications for context-bounded analysis (concurrency)

Algorithm 1: ConfDist

Input: RSM \mathcal{R} and \mathcal{R} -automaton \mathcal{C} with $\ell(t) = \overline{1}$ for all transitions t in \mathcal{C} **Output:** \mathcal{R} -automaton \mathcal{C}_{post^*} with $\mathcal{C}_{post^*}(c) = d(\mathcal{L}(\mathcal{C}), c)$ for all configurations c $1~{\rm preprocess}~{\mathcal C}$ as described in the main text // Initialization of worklist and summary function **2** WL := { $t = q \xrightarrow{\varepsilon} q' \mid q \in I \text{ and } \ell(t) = \overline{1}$ } **3** sum $(\langle e, m_e \rangle, x) := \overline{0}$ for all states $\langle e, m_e \rangle$ and $x \in Ex$ // Main loop 4 while $WL \neq \emptyset$ do extract $t_{\mathcal{C}}$ from WL 5 if $t_{\mathcal{C}} = \langle u, m_u \rangle \xrightarrow{\varepsilon} \langle e, m_e \rangle$ then 6 let \mathcal{M}_i be the module of node u7 // Internal transitions from u for each $t_{\mathcal{R}} = \langle u, u' \rangle \in \delta_i$ where $u' \in In_i$ do 8 $\operatorname{Relax}(\langle u', \widehat{m} \rangle \xrightarrow{\varepsilon} \langle e, m_e \rangle, \ell(t_{\mathcal{C}}) \otimes w_i(t_{\mathcal{R}}))$ 9 // Call transitions from ufor each $t_{\mathcal{R}} = \langle u, \langle b, e' \rangle \rangle \in \delta_i$ do 10 $\operatorname{Relax}(\langle e', \widehat{m} \rangle \xrightarrow{b} \langle e, m_e \rangle, \ell(t_{\mathcal{C}}) \otimes w_i(t_{\mathcal{R}}))$ $\mathbf{11}$ add $\langle e', \widehat{m} \rangle \xrightarrow{\varepsilon} \langle e', \widehat{m} \rangle$ to WL, if it was never added before 12// Exit transitions from ufor each $t_{\mathcal{R}} = \langle u, x \rangle \in \delta_i$ where $x \in Ex_i$ do 13 if sum $(\langle e, m_e \rangle, x) \not \subseteq \ell(t_c)$ then $\mathbf{14}$ $\operatorname{sum}(\langle e, m_e \rangle, x) := \operatorname{sum}(\langle e, m_e \rangle, x) \oplus \ell(t_{\mathcal{C}})$ 15foreach $\langle e, m_e \rangle \xrightarrow{b/v} \langle e', m_{e'} \rangle$ do 16 $\texttt{Relax}(\langle \langle b, x \rangle, \widehat{m} \rangle \xrightarrow{\varepsilon} \langle e', m_{e'} \rangle, v \otimes \texttt{sum}(\langle e, m_e \rangle, x))$ 17else if $t_{\mathcal{C}} = \langle e, m_e \rangle \xrightarrow{b} \langle e', m_{e'} \rangle$ then 18 let \mathcal{M}_i be the module of node e19 // Using entry-to-exit summaries for each $x \in Ex_i$ do $\mathbf{20}$ $\operatorname{Relax}(\langle \langle b, x \rangle, \widehat{m} \rangle \xrightarrow{\varepsilon} \langle e', m_{e'} \rangle, \ell(t_{\mathcal{C}}) \otimes \operatorname{sum}(\langle e, \widehat{m} \rangle, x)$ $\mathbf{21}$ 22 **Procedure** Relax(t, v)if $\ell(t) \neq \ell(t) \oplus v$ then $\mathbf{23}$ $\ell(t) := \ell(t) \oplus v$ $\mathbf{24}$ add t to WL $\mathbf{25}$