
Faster Algorithms for
Weighted Recursive State Machines

Krishnendu Chatterjee
Bernhard Kragl
Samarth Mishra

Andreas Pavlogiannis

Recursive State Machines (RSMs)

Formal model of recursive computation

Linearly equivalent to pushdown
systems (PDSs)

Advantages:
• Natural modeling

• Many parameters

– Number of modules 𝑓

– Entry bound 𝜃𝑒 = max
𝑖
𝐸𝑛𝑖

– Exit bound 𝜃𝑥 = max
𝑖
|𝐸𝑥𝑖|

– 𝜃 = max
𝑖
min(𝐸𝑛𝑖 , |𝐸𝑥𝑖|)

– …

2

A

B

C

𝑏1:ℳ2

D F

G

𝑏2:ℳ1E

ℳ1

ℳ2

𝐴, 𝜀 ⇒ 𝐸, 𝑏1 ⇒ 𝐴, 𝑏2𝑏1

⇒ 𝐵, 𝑏2𝑏1 ⇒ 𝑏2, 𝐶 , 𝑏1

⇒ 〈 𝑏1, 𝐺 , 𝜀〉

RSMs over Semirings

Label RSM transitions with weights from idempotent semiring 〈𝑊,⊕,⊗, 0,1〉

weight of computation: ⊗ weight of computation set: ⊕

3

𝑾 ⊕ ⊗ 0 1

Reachability 𝔹 ∨ ∧ ⊥ ⊤

Shortest path ℝ+ ∪ {∞} min + ∞ 0

Most probable path [0,1] max ⋅ 0 1

IFDS 2𝐷
𝑑
2𝐷 ⊓ ∘ 𝜆𝑥. ⊤ 𝜆𝑥. 𝑥

Canonical partial order
𝑎 ≤ 𝑏 ⇔ 𝑎⊕ 𝑏 = 𝑎

Monotonicity
𝑎 ≤ 𝑏 ⇒ 𝑎⊗ 𝑐 ≤ 𝑏 ⊗ 𝑐

Finite-height: 𝐻 ∈ ℕ longest descending chain in ≤

Distance Problems

Given a set of initial configurations 𝑆

• Configuration distance
𝑑 𝑆, 𝑢, 𝑏1⋯b𝑛

• Superconfiguration distance
𝑑 𝑆, 𝑢,ℳ1⋯ℳ𝑛

• Node distance
𝑑 𝑆, 𝑢

4

Our Solution

1. Configuration automata
Representation structures for sets of RSM configurations [BEM’97]

Initial automaton 𝐶, s.t. ℒ 𝐶 = 𝑆

2. Dynamic programming algorithm

Compute 𝐶∗, representing reachable configurations and distances

Key: Entry-to-Exit summaries [ABEGRY’05]

3. Distance extraction algorithms
Query configuration/superconfiguration/node distances from 𝐶∗

5

Configuration Automata

6

𝑢

𝑒

𝜀|𝑣1
⋯

𝑢′

𝜀|𝑣4
𝑒′

𝑏|𝑣2
𝑞

states correspond
to RSM nodes

run assembles
a stack

〈𝑢, 𝑏⋯ 〉 is an accepted configuration
Weight of configuration is ⨁ over all accepting runs

Relaxation Steps

7

𝑢 𝑒
𝜀|𝑣1

Internal transition: 𝑢
𝑣2
𝑢′

𝑢′
𝜀|…⨁(𝑣1⊗v2)

𝑢 𝑒
𝜀|𝑣1

Call transition: 𝑢
𝑣2
𝑏, 𝑒′

𝑒′
𝑏|…⊕ (𝑣1⊗𝑣2)

𝑢 𝑒′
𝜀|𝑣

Exit transition: 𝑢 𝑥

〈𝑏, 𝑥〉
𝜀 …⊕ (𝑣2⊗𝑠𝑢𝑚 𝑒, 𝑥

𝑒
𝑏|𝑣2

𝑠𝑢𝑚 𝑒, 𝑥
:= ⋯⊕ 𝑣

𝑒′ 𝑒
𝑏|𝑣

Using summary: 𝑠𝑢𝑚 𝑒′, 𝑥

〈𝑏, 𝑥〉
𝜀| …⊕ 𝑣 ⊗ 𝑠𝑢𝑚 𝑒′, 𝑥

Reachability Example

8

A

B

C

𝑏1:ℳ2

D F

G

𝑏2:ℳ1E

ℳ1

ℳ2

A B
𝜀

D

E

𝑏1

𝑏1

Summaries:
𝐴 ⇝ 𝐶

F

𝜀

𝑏2

〈𝑏2, 𝐶〉

𝜀

𝐸 ⇝ 𝐺

〈𝑏1, 𝐺〉
𝜀

𝐷 ⇝ 𝐺

Correctness and Complexity

9

For every configuration 𝑐: 𝑑 ℒ 𝐶 , 𝑐 = 𝐶∗(𝑐)

𝐶∗ is constructed in time

𝒪 𝐻 ⋅ ℛ ⋅ 𝜃𝑒 + 𝜃𝑒 ⋅ 𝜃𝑥 ⋅ 𝐶𝑎𝑙𝑙

Compared to PDS algorithm
𝒪 𝐻 ⋅ ℛ ⋅ 𝜃𝑒 ⋅ 𝜃𝑥 ⋅ 𝑓

Factor
ℛ ⋅𝑓

|ℛ|

𝜃𝑥
+ 𝐶𝑎𝑙𝑙

improvement

Empirical Evaluation

RSM-based algorithm vs. PDS-based algorithm

Our tool jMoped

1. Scaling on artificial examples

2. Interprocedural program analysis problems

10

A Family of Dense RSMs

ℛ3

11

ℛ ⋅ 𝑓

|ℛ|
𝜃𝑥
+ 𝐶𝑎𝑙𝑙

=
𝑛2 ⋅ 1
𝑛2

𝑛 +𝑛
= 𝒏

Boolean Programs from SLAM/SDV

Absolute runtime (seconds) Relative speedup

12

Our Solution

1. Configuration automata
Representation structures for sets of RSM configurations [BEM’97]

Initial automaton 𝐶, s.t. ℒ 𝐶 = 𝑆

2. Dynamic programming algorithm

Compute 𝐶∗, representing reachable configurations and distances

Key: Entry-to-Exit summaries [ABEGRY’05]

3. Distance extraction algorithms
Query configuration/superconfiguration/node distances from 𝐶∗

13

Distance Extraction

• Configuration distance for 〈𝑢, 𝑏1⋯𝑏𝑛〉

Dynamic programming: 𝒪 𝑛 ⋅ 𝜃𝑒
2

• Superconfiguration distance for 〈𝑢,ℳ1⋯ℳ𝑛〉

Replace 𝑒
𝑏
𝑒′ with 𝑒

ℳ
𝑒′ where ℳ is module of 𝑒′

• Node distance
Traditional single-source distance problem

14

u

𝑒0𝑠 𝑒1𝑠 𝑒𝑛𝑠

⋯

𝑏1 𝑏𝑛𝜀

Distances over Small Semirings

15

1𝜃𝑒 ⋅ 𝐴𝑢 ⋅ 𝐴𝑏1⋯𝐴𝑏𝑛 ⋅ 1𝜃𝑒
𝑇

𝑊𝜃𝑒×𝜃𝑒 matrix
𝐶∗ transitions labeled 𝑏𝑖

𝑊𝜃𝑒 vector

𝐶∗ transitions 𝑢
𝜀
𝑒

• Constant size semiring (Mailman’s speedup)

𝒪 𝑛 ⋅ 𝜃𝑒
2

log 𝜃𝑒

• Size 𝑊 semiring (William’s speedup)

for 𝜀 > 0, 𝒪 𝑛 ⋅ 𝜃𝑒
2

𝜀2log2 𝜃𝑒
(some preprocessing)

• Binary semiring (Four-Russians speedup)

𝒪 ℛ ⋅ 𝜃𝑒 ⋅
𝑛

log 𝑛

Summary

• Faster interprocedural analysis (RSM > PDS)

• Configuration automata
 Saturation algorithm (summaries)

 Distance extraction

• More in the paper

– Further distance extraction speedups

– Implications for context-bounded analysis (concurrency)

16

17

18

