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Abstract. We describe new extensions of the Vampire theorem prover for com-
puting tree interpolants. These extensions generalize Craig interpolation in Vam-
pire, and can also be used to derive sequence interpolants. We evaluated our im-
plementation on a large number of examples over the theory of linear integer
arithmetic and integer-indexed arrays, with and without quantifiers. When com-
pared to other methods, our experiments show that some examples could only be
solved by our implementation.

1 Introduction

In interpolation-based verification approaches, a Craig interpolant [3] is a logical for-
mula justifying why a program trace is spurious and therefore can be used, for example,
to refine the set of predicates for predicate abstraction [10], invariant generation [13],
and correctness proofs of programs [8]. As refining a path in the control flow graph of
a program requires iterative computations of interpolants for each path location, Craig
interpolants have been generalized to sequence interpolants for their use in bounded
model checking non-procedural programs [10]. Using sequence interpolants to rea-
son about programs with recursive procedures is however a non-trivial task. The work
of [12] introduces the notion of tree interpolants, which can be used for the verification
of concurrent [5] and recursive programs [8]. In this context, dependencies between
program paths are encoded using a tree data structure, where a tree node represents a
formula valid at an intermediate program location. Tree interpolants provide a nested
structure for representing formulas, and therefore allow to reason about programs with
function/procedure calls.

Similarly to Craig interpolation, the key ingredient in theorem proving based tree in-
terpolation is the computation of special proofs, for example local or split proofs [10,9],
with feasible interpolation. Interpolants from such proofs can be constructed in polyno-
mial time in the size of the proof. Current approaches for building Craig/sequence/tree
interpolants depend on the existence of such proofs. For example, [14] uses SMT rea-
soning to derive Craig interpolants in the quantifier-free theory of linear arithmetic and
uninterpreted functions. This approach is further generalized in [7] for computing tree
interpolants from propositional proofs and in [2,12,5] to derive tree interpolants in the
theory of linear arithmetic and uninterpreted functions. Contrary to the above tech-
niques, in [9] Craig interpolants are extracted from first-order local proofs in any sound
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calculus, without being limited to decidable theories. However, the method of [9] cannot
yet be used for deriving tree and sequence interpolants.

In this paper we address the generality of [9] and describe a tool support for ex-
tracting tree interpolants in arbitrary first-order theories (Section 4). Our method is im-
plemented in the Vampire theorem prover [11] and extends Vampire with new features
for theory reasoning and interpolation. Our implementation adds a general interpola-
tion procedure to Vampire, which can be used for computing Craig interpolants, se-
quence interpolants and tree interpolants. For doing so, we reduce the problem of tree
interpolations to iterative applications of Craig interpolants on tree nodes (Section 3).
Our approach is different from [2,7] where tree interpolants are extracted from only
one proof, by exploiting propositional reasoning or linear arithmetic properties. Our
tool can be used in arbitrary theories and calculus, but comes at the cost of comput-
ing different proofs for each tree node. Our implementation can however be optimized
when considering specific theories, reducing the burden of iterative proof computations.
We tested our tool on challenging examples over arrays, involving reasoning with both
quantifiers and theories (Section 5). To the best of our knowledge, our tool is the only
approach able to derive tree interpolants with both quantifiers and theory symbols. We
also evaluated our implementation on examples coming from the model checking of de-
vice drivers, where quantifier-free reasoning over linear integer arithmetic and integer-
indexed arrays was required. On these examples our method does not perform as well
as theory-specific approaches, e.g. [14]. The strength of our tool comes thus when tree
interpolants in full first-order theories are needed. Extending our implementation with
proof transformations for various theories is an interesting task for future work.

2 Tree Interpolation

All formulas in this paper are first-order, with standard boolean connectives and quanti-
fiers. The language of a formula R, denoted by LR, is the set of all formulas built from
the symbols occurring in R. By a symbol we mean function and predicate symbols;
variables are not symbols. Given two formulas R and B such that R ∧ B is unsat-
isfiable, a formula IR,B is called a Craig interpolant of R and B (or simply just an
interpolant) iff R → IR,B , IR,B ∧ B is unsatisfiable, and IR,B contains only symbols
that occur both in the languages of R and B. A proof of unsatisfiability of R ∧ B is
called local [9] if every proof step uses symbols either only from R, or only from B.

We describe the problem of tree interpolation, by adapting the notation of [1,12].

Definition 1. A tree interpolation problem T = (V, r, P, L) is a directed labeled tree,
where V is a finite set of nodes, r ∈ V is the root, P : (V \ {r}) 7→ V is a function
that maps children nodes to their parents, and L : V 7→ F is a labeling function that
maps nodes to formulas from a set F of first-order formulas, such that

∧
v∈V L(v) is

unsatisfiable.

Let T = (V, r, P, L) be a tree interpolation problem and P ∗ be the reflexive tran-
sitive closure of P . For V0 ⊆ V we write L(V0) to denote the formula

∧
v∈V0

L(v).
For each v ∈ V we define Vin(v) = {c | v ∈ P ∗(c)} and Vout(v) = V \ Vin(v). The
problem of tree interpolation is then to compute a tree interpolant, defined as follows.
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Node: r
L(r): a = b

Node: v1
L(v1): a > 0

Node: v2
L(v2): b < 0

(a) Tree interpolation problem.

Node: r
I(r):⊥

Node: v1
I(v1): a > 0

Node: v2
I(v2): b ≤ 0

(b) Tree interpolant.

Fig. 1. An example of tree interpolation; a and b are integer-valued constants.

Definition 2. Let T = (V, r, P, L) be a tree interpolation problem. A tree interpolant
for T is a function I : V 7→ F satisfying the following conditions:

(C1) I(r) = ⊥;
(C2) for each v ∈ V , we have:

(∧
P (ci)=v I(ci) ∧ L(v)

)
→ I(v);

(C3) for each v ∈ V , we have: LI(v) ⊆ LL(Vin(v)) ∩ LL(Vout(v)).

In the following, we refer to I(v) as a node interpolant, or simply just an inter-
polant, of node v. Figure 1(a) gives an example of a tree interpolation problem, and
Figure 1(b) shows a correspoding tree interpolant.

3 Tree Interpolation Algorithm

When computing a tree interpolant for a tree interpolation problem T , we need to es-
tablish conditions (C1)-(C3) from Definition 2. Since L(Vin(v)) ∧ L(Vout(v)) is un-
satisfiable for each v ∈ V , we can compute an interpolant between L(Vin(v)) and
L(Vout(v)). However, computing all node interpolants I(v) this way may violate con-
dition (C2), as illustrated in Example 1.

Example 1. Consider the tree interpolation problem from Figure 1(a). We compute
I(v1) as an interpolant between L(v1) and L(v2) ∧ L(r), and I(v2) as an interpolant
between L(v2) and L(v1) ∧ L(r). In this example, we may take I(v1) = (a ≥ 0) and
I(v2) = (b ≤ 0). By definition, I(r) = ⊥. But then I(v1)∧ I(v2)∧L(r) is satisfiable,
and hence I(v1) ∧ I(v2) ∧ L(r)→ I(r) does not hold.

Example 1 shows that node interpolants are logically weaker than node labels. Al-
ready computed node interpolants have to be taken into account for computing further
node interpolants. Our tree interpolation algorithm is based on this observation and
summarized in Algorithm 1.

In line 4 all node interpolants are initialized to∞, representing undefined. A node
interpolant in our algorithm is thus either undefined or a first-order formula. Then we
iterate over all nodes of T according to the loop condition in line 6. That is, we always
choose an arbitray node v with undefined interpolant, such that the interpolants of its
children have already been computed. In lines 7-8 the tree nodes are partitioned into
Vin(v) and Vout(v), which are used to obtain the formulas Rv and Bv , by taking the
conjunction of node labels from root to leaves up to the first defined node interpolant
(see Algorithm 2). Then I(v) is set to a Craig interpolant of Rv and Bv (line 9). Using
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Algorithm 1 Tree Interpolation.
1: Input: Tree interpolation problem T = (V, r, P, L)
2: Output: Tree interpolant I of T
3: for each v ∈ V do
4: I(v) =∞
5: end for
6: for each v ∈ V such that I(v) =∞ and I(c) 6=∞ for each c ∈ V with v = P (c) do
7: Rv = S(Vin(v), v) (call to Alg. 2)
8: Bv = S(Vout(v), r) (call to Alg. 2)
9: I(v) = CraigInterpolant(Rv, Bv)

10: end for

Algorithm 2 Interpolant/Label Collection.
1: Input: Set of tree nodes V0 ⊆ V and a node v ∈ V
2: Output: Node interpolant of v or conjunction of children interpolants and label of v

3: S(V0, v) =

{
I(v) if I(v) 6=∞∧

P (c)=v∧c∈V0
S(V0, c) ∧ L(v) otherwise

induction over the set of nodes, it is now easy to prove that I(v) satisfies the constraints
of tree interpolation for every node v, and hence Algorithm 1 computes a tree inter-
polant I of T . Note that Algorithm 1 does not specify the concrete order in which the
nodes are visited. Different feasible orderings lead to different tree interpolants.

4 Implementation in Vampire

We implemented the tree interpolation method of Algorithm 1 in the Vampire theorem
prover. To make Vampire able to compute tree interpolants, we had to extend Vampire
with new functionalities, including reading tree interpolation problems, deriving tree
interpolants, computing interpolants of tree nodes, and theory-specific proof transfor-
mation steps for proof localisation. We also extended Vampire with built-in data types
for integer-indexed arrays, and added array axioms to the built-in theory reasoning en-
gine of Vampire. All together computing tree interpolants in Vampire required about
5000 lines of C++ code. The architecture of our implementation is given in Figure 2.
Tool usage. Our implementation is available at http://vprover.org/tree itp. For using it,
one should simply invoke Vampire on the command line as follows:

vampire --show_interpolant tree --[vampire/z3] problem

The choice of using either vampire or z3 refers to proof generation (see later),
whereas the input format of problem is as detailed below.
Input. Inputs to our implementation are tree interpolation problems in the SMT-LIB 1.2
format, using the input standard of [1]. Propositional variables are used to denote tree
nodes, and logical implication is used to specify parent-child relations between nodes.
Tree interpolation. We use Algorithm 1 to compute and output a tree interpolant I of
T . We explore the tree in a breadth-first manner, starting from the leaves of the tree. At
each level, we visit the nodes from left-to-right and compute their interpolants.

http://vprover.org/tree_itp
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Fig. 2. Tree interpolation in Vampire.

Interpolants of tree nodes. When computing interpolants for tree nodes, we adapt
the Craig interpolation procedure of [9] to our setting of Rv and Bv . We collect the
set of symbols occurring only in Rv , respectively in Bv . The set of symbols used in
a Craig interpolant of Rv and Bv is then defined as the set of symbols common to
both Rv and Bv . With such specification of symbols, our task is to derive a local proof
of Rv ∧ Bv → ⊥ and compute a Craig interpolant from this proof. We used [9] to
construct Craig interpolants from local proofs and computed interpolants that are small
both in their number of symbols and quantifiers. For generating local proofs we used
the following two directions.
Proof localization. We generate local proofs either by using Vampire or by localizing
an SMT proof generated by the Z3 SMT solver [4]. When using Vampire, the symbol
specifications of Rv and Bv are used as Vampire annotations to ensure that the gen-
erated Vampire proofs are local. When running Z3, we first obtain a Z3 proof which
might not be local. Then, using the symbol specifications of Rv and Bv we try to lo-
calize the SMT proof by (i) quantifying away some constant symbols of Rv or Bv as
explained in [9] and by (ii) applying proof transformation steps over linear arithmetic
and uninterpreted functions (as explained later). For parsing and localising SMT proofs,
our implementation extends Vampire with built-in sorts for integer-indexed arrays and
adds array reasoning based on the extensionality axioms of the array theory. To use
Craig interpolants in further steps of tree interpolation, we also extended Vampire with
a parser for converting Vampire formulas into the SMT-LIB format, by considering
theory-specific reasoning over linear integer arithmetic and arrays.
Theory-specific reasoning for proof localization. In some cases, Vampire rewrites
the non-local parts of an SMT proof without using the approach of [9] for introducing
quantifiers. In [6], we have presented theory-specific proof rewriting rules that localize
proofs involving linear arithmetic with uninterpreted function symbols. Vampire uses
now some of these rules to recognize patterns of non-local SMT proofs and rewrite them
into a local proof in the quantifier-free theory of linear arithmetic and uninterpreted
functions. To illustrate how theory-aware SMT proof localisation is performed in our
implementation, consider the following example. Let R be a = b ∧ b = c and B the
formula c = d ∧ a 6= d, where a, b, c, d are integer-valued constants. Clearly, R and B
is unsatisfiable. A possible SMT proof of unsatisfiability (e.g. by Z3) might involve the
following steps: derive b = d from b = c and c = d and derive a = d from a = b and
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Table 1. Tree interpolation in Vampire on quantified array problems.

Example Description Tree Interpolant
Init set array elements to 0, update one element to 1 all elements 0 or 1
Sorted sort array in ascending order ordering between two concrete array elements
Sorted2 sort array in ascending order ordering for range of array elements
Shift set array elements to the values of their neighbours array elements are all equal

b = d, which then contradicts a 6= d. Note that b = d yields a non-local proof step as
it uses symbols that are not common to R and B. Our proof transformation in Vampire
will then reorder this equality derivation. The rewritten proof will then derive a = c
from a = b and b = c and infer a = d from a = c and c = d; clearly, this proof is local
and, unlike [9], uses no quantifiers over b and d.
Optimizations. To reduce the number of local proof computations, we implemented
the following heuristic. When extracting the symbols of Rv and Bv for a node v, we
also derive whether Rv uses only symbols common to Bv . If this is the case, we take
Rv as the interpolant IRvBv

. A similar heuristic is implemented also when Bv contains
only symbols common to Rv . In our experiments we observed that these heuristics save
expensive theorem proving calls.
Sequence and Craig Interpolants. Our implementation can also be used to compute
sequence interpolants. In this case, the sequence structure is represented as a sequence
of SMT-LIB assumptions, and no additional propositional variables are used to denote
assumptions (i.e. tree nodes). To use Vampire for computing sequence interpolants, one
should specify sequence instead of tree in the command run execution of Vam-
pire. Our implementation can also be used to simply compute Craig interpolants of
two formulas, by using the approach of [9] and specifying on instead of tree in the
command line. Tree interpolation in Vampire hence brings a general interpolation pro-
cedure, which can be used for tree, sequence and Craig interpolation.

5 Experiments

We evaluated tree interpolation in Vampire using two benchmark suites. One is a collec-
tion of 4 examples where quantified reasoning over the array content is needed. These
examples are taken from [13,15] and involve common array operations, such as initial-
ization, copying and sortedness (Table 1). The other one is a collection of 175 problems
(Table 2), extracted from the bounded model checking of device drivers [12]. These
examples are expressed in the quantifier-free theory of linear integer arithmetic and
integer-indexed arrays. All experiments reported here were obtained using a Lenovo
X200 machine with 4GB of RAM and Intel Core 2 Duo processor with 2.53GHz, and
are available at the url of our tool.
Quantified array problems. We computed tree interpolants in the quantified theory
of arrays and integer arithmetic for 4 array problems. The examples involved proce-
dure calls implementing array initialization, copy and sorting. We manually converted
these problems into corresponding tree interpolation problems, and then run our imple-
mentation. Each tree interpolation problem had a tree with 3 nodes. Example 2 shows
later one of these benchmark and Table 1 summarizes our experiments. For each exam-
ple, the table states the name of the example, gives a brief description of the program,



Tree Interpolation in Vampire 7

Table 2. Tree interpolation in Vampire
on quantifier-free array problems.

Prover Nb. Benchmarks Success Time
Vampire 175 101 60s
Z3 175 113 60s

Table 3. Tree interpolation in Vampire and iZ3.

Tool Quantified problems Quantifier-free problems
Total Solved Total Solved

Vampire 4 4 175 141
iZ3 4 1 175 175

and summarizes the tree interpolant. For the examples Init, Sorted2, and Shift,
one tree node required the computation of a quantified node interpolant. All examples
were solved in less than 1 second. The tree interpolants generated by our method were
successfully used to proved quantified safety assertions over arrays.
Quantifier-free array problems. The experiments described in Table 2 involved pars-
ing 738′890 lines of SMT-LIB, with an average of about 90 tree nodes per benchmark.
This means, that deriving a tree interpolant required on average computing 90 node in-
terpolants per benchmarks. We distinguish between the use of Z3 or Vampire for com-
puting local proofs of node interpolants – see column 1 of Table 2. Column 2 shows the
number of benchmarks used in our experiments. Colum 3 gives the number of problems
on which our implementation succeeded to compute tree interpolants, and column 4 list
the average time (in seconds) per problem required by our implementation.

When using Vampire for local proof generation, we derived tree interpolants for
101 examples. Since the benchmarks were quantifier-free, the tree interpolants were
quantifier-free as well. The 74 examples on which Vampire was not able to compute
local proofs required more complex reasoning about arrays, involving both reading and
writing to arrays.

When using Z3 for local proof generation, Z3 proved all 175 examples, however
the returned proofs were not local. We succeeded to localize proofs, and hence com-
pute tree interpolants, for 113 examples, out of which 14 tree interpolants contained
quantifiers. We failed on 62 examples either because (i) proofs could not be localized,
or (ii) quantified node interpolants were computed. When using quantified node inter-
polants in further steps of the tree interpolation, Z3 failed to find proofs in many cases.

Finally we note that some tree interpolation problems could only be solved by either
using Vampire or Z3 for local proof generation. In total, we derived tree interpolants
for 141 examples. The results of Table 2 suggest that improving theory-specific proof
transformations as well as reasoning with both theories and quantifiers would yield
better results for tree interpolation in first-order theories.
Experimental comparison. We compared our tool to the tree interpolation procedure
of iZ3 [1]. Table 3 shows that iZ3 performs much better on the quanifier-free exam-
ples of Table 2. However, on the quantified array problems, iZ3 succeeded only on the
Sorted example where the tree interpolant did not involved quantifiers. Unlike iZ3,
we derived tree interpolants for all quantified problems. For the problems where iZ3
failed, we either observed an incorrect interpolant, a segmentation fault or a failed proof
attempt by Z3. Example 2 shows an interpolation problem for which iZ3 computes an
incorrect result. Table 3 underlines the advantage of tree interpolation in Vampire: it
can be used for quantified reasoning over (arbitrary) first-order theories. To the best of
our knowledge, no other approach can compute quantified tree interpolants.
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Node: r
L(r): sorted array(A) ∧ A[a] = 10

Node: v1
L(v1): b > a

iZ3 I(v1): ¬(b ≤ a)
Vampire I(v1): b > a

Node: v2
L(v2): c > b ∧ A[c] = 5

iZ3 I(v2): A[c] ≤ 5 ∧ b ≤ c− 1
Vampire I(v2): ¬∀i A[i] ≤ 10→ i ≤ b

Fig. 3. Tree interpolation on the Sorted2 example from Table 1.

Example 2. The tree structure of Figure 3 shows the tree interpolation problem of the
Sorted2 example of Table 1. In this example, a, b, c are integer-valued constants
and A is an array of integers. Further, in the root label we have sorted array(A) ⇔
(∀i)(∀j) i < j → A[i] < A[j]. Figure 3 also shows the incorrect tree interpolant
computed by iZ3 and the correct tree interpolant computed by Vampire.

6 Conclusion

We described how tree interpolation in Vampire is implemented and can be used. Our
implementation extends Vampire with deriving tree interpolants, computing interpolants
for tree nodes, theory-specific proof localisations, and built-in data structures for arrays.
In addition, tree interpolation in Vampire can be used to compute sequence or Craig
interpolants. Our experiments highlight the advantage of our implementation for quan-
tified tree interpolation. Future work includes extending our implementation with better
theory reasoning both for proof localisation and proving, and deriving tree interpolants
from only one proof of unsatisfiability. We are also interested in evaluating the quality
of our tree interpolants in the context of model checking, by using them for proving
safety properties of problems.

Acknowledgements. We thank Ken McMillan for the quantifier-free benchmarks.
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