
Verifying Concurrent Programs:
Refinement, Synchronization,

Sequentialization
by

Bernhard Kragl

September 4, 2020

A thesis presented to the
Graduate School

of the
Institute of Science and Technology Austria, Klosterneuburg, Austria

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy





The thesis of Bernhard Kragl, titled Verifying Concurrent Programs: Refinement,
Synchronization, Sequentialization, is approved by:

Supervisor: Thomas A. Henzinger, IST Austria, Klosterneuburg, Austria

Signature:

Committee Member: Krishnendu Chatterjee, IST Austria, Klosterneuburg, Austria

Signature:

Committee Member: Shaz Qadeer, Novi, Seattle, USA

Signature:

Committee Member: Georg Weissenbacher, TU Wien, Vienna, Austria

Signature:

Defense Chair: Björn Hof, IST Austria, Klosterneuburg, Austria

Signature:
signed page is on file





c⃝ by Bernhard Kragl, September 4, 2020
All Rights Reserved

IST Austria Thesis, ISSN: 2663-337X

I hereby declare that this thesis is my own work and that it does not contain other people’s
work without this being so stated; this thesis does not contain my previous work without
this being stated, and the bibliography contains all the literature that I used in writing
the dissertation.

I declare that this is a true copy of my thesis, including any final revisions, as approved by
my thesis committee, and that this thesis has not been submitted for a higher degree to
any other university or institution.

I certify that any republication of materials presented in this thesis has been approved by
the relevant publishers and co-authors.

Signature:

Bernhard Kragl
September 4, 2020

signed page is on file





v

Abstract

Designing and verifying concurrent programs is a notoriously challenging, time consuming,
and error prone task, even for experts. This is due to the sheer number of possible
interleavings of a concurrent program, all of which have to be tracked and accounted for
in a formal proof. Inventing an inductive invariant that captures all interleavings of a
low-level implementation is theoretically possible, but practically intractable. We develop
a refinement-based verification framework that provides mechanisms to simplify proof
construction by decomposing the verification task into smaller subtasks.

In a first line of work, we present a foundation for refinement reasoning over structured
concurrent programs. We introduce layered concurrent programs as a compact notation
to represent multi-layer refinement proofs. A layered concurrent program specifies a
sequence of connected concurrent programs, from most concrete to most abstract, such
that common parts of different programs are written exactly once. Each program in this
sequence is expressed as structured concurrent program, i.e., a program over (potentially
recursive) procedures, imperative control flow, gated atomic actions, structured parallelism,
and asynchronous concurrency. This is in contrast to existing refinement-based verifiers,
which represent concurrent systems as flat transition relations. We present a powerful
refinement proof rule that decomposes refinement checking over structured programs into
modular verification conditions. Refinement checking is supported by a new form of
modular, parameterized invariants, called yield invariants, and a linear permission system
to enhance local reasoning.

In a second line of work, we present two new reduction-based program transforma-
tions that target asynchronous programs. These transformations reduce the number
of interleavings that need to be considered, thus reducing the complexity of invariants.
Synchronization simplifies the verification of asynchronous programs by introducing the
fiction, for proof purposes, that asynchronous operations complete synchronously. Synchro-
nization summarizes an asynchronous computation as immediate atomic effect. Inductive
sequentialization establishes sequential reductions that captures every behavior of the
original program up to reordering of coarse-grained commutative actions. A sequential
reduction of a concurrent program is easy to reason about since it corresponds to a simple
execution of the program in an idealized synchronous environment, where processes act in
a fixed order and at the same speed.

Our approach is implemented the Civl verifier, which has been successfully used for
the verification of several complex concurrent programs. In our methodology, the overall
correctness of a program is established piecemeal by focusing on the invariant required for
each refinement step separately. While the programmer does the creative work of specifying
the chain of programs and the inductive invariant justifying each link in the chain, the
tool automatically constructs the verification conditions underlying each refinement step.



vi

Acknowledgments

This thesis would not have been possible without the generous help, support, and guidance
of many people. I am grateful to all those who contributed, directly or indirectly, to the
research presented in this thesis.

To my advisor Tom Henzinger, for guiding me through the twisty roads of graduate
school. Early on, Tom gave me great freedom and encouragement to pursue problems I
find interesting. Talking to Tom always revealed how convoluted and unrefined my ideas
still were. His ability to, seemingly without effort, see the big picture, distill wild thoughts
to their essence, and suggest directions to get unstuck never failed to impress me. Tom
taught me to keep going after failing, and to celebrate successes; but not for too long,
since research is never done.

To Shaz Qadeer, for spending endless hours in Skype calls, teaching me everything
about concurrency, and much more. What started as a summer internship at Microsoft
Research turned into an ongoing fruitful collaboration, which is the topic of this thesis.
Shaz taught me how to be both enthusiastic and cynic about research, especially about
our own work, and when to be perfectionist or pragmatic.

To Constantin Enea and Suha Mutluergil, for the fun stays in Paris, our collaboration,
and the many valuable discussions from which I learned a lot.

To Krishnendu Chatterjee and Georg Weissenbacher, for serving on my thesis committee
and valuable advice along the way.

To all group members at IST Austria over the years, for keeping the office a lively
and nurturing environment, the insightful discussions and useful feedback, and the heated
coffee-break debates.

To my “research friends”, whom I always look forward to meet again at the next
conference, workshop, or summer school. To my “civilian friends”, for pulling me out of
the research bubble from time to time.

Finally, to my family; my parents Angela and Friedrich, my sister Birgit, and above
all, my wife Sandra, for their endless love, support, and patience, which makes it all
worthwhile.



vii

About the Author

Bernhard Kragl completed a BSc and MSc in Computer Sciences at the Vienna University
of Technology, after which he joined Tom Henzinger’s group at IST Austria as a PhD
student. His research interests are in programming languages and formal methods for the
development of reliable software systems. His thesis work focuses on reasoning techniques
for concurrent and distributed systems that ease the verification burden for programmers.



viii

List of Publications

This dissertation is a collection of the following publications.

• Chapter 2
Bernhard Kragl and Shaz Qadeer. Layered concurrent programs. In CAV, 2018.
doi:10.1007/978-3-319-96145-3_5

• Chapter 3
Bernhard Kragl, Shaz Qadeer, and Thomas A. Henzinger. Refinement for structured
concurrent programs. In CAV, 2020. doi:10.1007/978-3-030-53288-8_14

• Chapter 4
Bernhard Kragl, Shaz Qadeer, and Thomas A. Henzinger. Synchronizing the asyn-
chronous. In CONCUR, 2018. doi:10.4230/LIPIcs.CONCUR.2018.21

• Chapter 5
Bernhard Kragl, Constantin Enea, Thomas A. Henzinger, Suha Orhun Mutluergil,
and Shaz Qadeer. Inductive sequentialization of asynchronous programs. In PLDI,
2020. doi:10.1145/3385412.3385980

http://dx.doi.org/10.1007/978-3-319-96145-3_5
http://dx.doi.org/10.1007/978-3-030-53288-8_14
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.21
http://dx.doi.org/10.1145/3385412.3385980


ix

Table of Contents

Abstract v

Acknowledgments vi

About the Author vii

List of Publications viii

List of Tables xi

List of Figures xii

1 Introduction xiv

1.1 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The Landscape of Verification Approaches . . . . . . . . . . . . . . . . . . 2

1.3 Deductive Verification of Concurrent Programs . . . . . . . . . . . . . . . . 3

1.4 Contributions and Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Layered Concurrent Programs 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Concurrent Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Layered Concurrent Programs . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Refinement Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Refinement for Structured Concurrent Programs 32

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 RefPL: Syntax and Semantics . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Abstracting RefPL Programs . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



x

4 Synchronizing the Asynchronous 53

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 An Asynchronous Programming Language . . . . . . . . . . . . . . . . . . 57

4.4 Synchronizing Asynchrony . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5 Verifying Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.6 Eliminating Pending Asynchrony . . . . . . . . . . . . . . . . . . . . . . . 65

4.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Inductive Sequentialization of Asynchronous Programs 71

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4 Inductive Sequentialization . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6 Conclusions 95



xi

List of Tables

5.1 Examples verified with IS. . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



xii

List of Figures

1.1 Owicki-Gries proof of a simple concurrent program. . . . . . . . . . . . . . 4

1.2 Necessity of auxiliary variables in Owicki-Gries proofs. . . . . . . . . . . . 5

1.3 Over a bag channel, receive is a right mover and send is a left mover,
but not vice versa. Clouds represent the (unordered) content of a channel,
and a and b are values received from and sent to the channel by different
threads. (1) receive a moves right of receive b; (2) send b moves left of
send a; (3) send b moves left of receive a (receive a moves right of send b);
(4) send b does not move right of receive b (receive b does not move left of
send b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Concurrent programs Pi and connecting checker programs Ci represented
by a layered concurrent program LP . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Concurrent programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Lock example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Layered Concurrent Programs . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Type checking rules for layered concurrent programs . . . . . . . . . . . . . 20

2.6 Lock example (layered concurrent program) . . . . . . . . . . . . . . . . . 23

2.7 Atomicity automaton. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.8 Lock example (variable introduction at layer 1) . . . . . . . . . . . . . . . 27

2.9 Instrumented procedures Enter and Leave (layer 1 checker program) . . . 28

3.1 Incrementing two separate counters to illustrate yield invariants. . . . . . . 37

3.2 Spin lock to illustrate refinement of atomic actions. . . . . . . . . . . . . . 38

3.3 Barrier synchronization to illustrate linear interfaces. . . . . . . . . . . . . 39

3.4 The programming language RefPL: syntax (top panel), proof annotations
(middle panel), and operational semantics (bottom panel). . . . . . . . . . 41

3.5 Linear type checking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6 Abstraction mapping from configurations of P to configurations of P ′. . . . 49

4.1 Asynchronous increments and decrements . . . . . . . . . . . . . . . . . . . 55

4.2 Lock service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Small-step operational semantics . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Atomicity automaton. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



xiii

4.5 Synchronizing asynchronous executions . . . . . . . . . . . . . . . . . . . . 60

4.6 Tracking automaton. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.7 Concurrent tracking semantics
M,Q,Σ
===⇒ and sequential synchronized semantics

Σ−→ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.8 Lock service in Civl (excerpt) . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.9 2PC call hierarchy (from left to right) and proof outline (right to left) . . . 68

5.1 Broadcast consensus protocol. ① Original program. ② Program after
reduction to atomic actions. ③ Sequentialization. ④ Abstraction of Collect
action. ⑤ Partial sequentialization. . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Illustration of the induction argument. Clouds represent the set of PAs in
a configuration (stores are not shown) and the arrow labels indicate the
actions that execute in the transitions from one configuration to the next. . 82

5.3 Inductive sequentialization (IS) proof rule. . . . . . . . . . . . . . . . . . . 83

5.4 Excerpts from our Paxos proof. . . . . . . . . . . . . . . . . . . . . . . . . 87



xiv



1

1 Introduction

Concurrency is ubiquitous in today’s computing landscape. Geographically distributed
data centers rely on fault-tolerant distributed algorithms to ensure consistency; massively-
parallel supercomputers empower large-scale scientific computing; mobile and web applica-
tions use event-driven asynchronous programming to achieve a fast and responsive user
experience; controllers of embedded systems need to react to asynchronous events from the
outside world; just to name a few examples. Despite their widespread use, designing and
implementing concurrent programs remains a notoriously challenging and error-prone task.
This is due to the sheer number of behaviors a concurrent program can exhibit. Concurrent
operations can execute in many different orders, e.g., because of the unpredictability of
scheduling threads on a multiprocessor or the delivery of messages in a distributed network.
In short, there are many inherent sources of nondeterminism, and keeping track of all
possible executions is an overwhelming mental task, especially as systems evolve. This
thesis is concerned with formal methods to help designers and programmers build more
reliable concurrent systems by offering techniques, methodologies, and tools that assist in
the rigorous analysis and verification of these systems.

1.1 Specifications

Before we can even say if a system behaves correctly, we need to say what it means for
the system to behave correctly; we need a specification. Specifications vary greatly in
shape and form. For example, we could be interested in shallow generic properties (e.g.,
memory safety or data-race freedom), rich functional properties, temporal properties,
hyperproperties (e.g., privacy properties), quantitative properties, etc. In this thesis we
are interested in rich functional safety1 properties expressed in mathematical logic. For
example, in a system consisting of a finite set of processes P , the formula

∀ p1, p2 ∈ P. p1.hasDecided ∧ p2.hasDecided =⇒ p1.decidedValue = p2.decidedValue

states that the processes never reach an inconsistent decision. If any two processes p1 and
p2 have reached a decision, then they must have decided on the same value.

We acknowledge that obtaining and maintaining good specifications is a hard problem
by itself. We do not directly contribute to this problem. However, the refinement approach
we follow (see below) facilitates a dual view of programs as both implementations and
specifications. Intermediate programs derived by our approach can be understood as
natural specifications of subcomponents.

1Intuitively, a safety property states that “something bad never happens“ [84].



2

1.2 The Landscape of Verification Approaches

There are many different approaches to gain confidence in the correct functioning of a
computer system, spanning a spectrum between cost (i.e., time, resources, expertise, etc.)
and benefit (i.e., strength of provided guarantees). We provide a (necessarily rough and
incomplete) overview to position our work. Detailed discussions and comparisons to related
work can be found in every subsequent chapter (in particular, Section 2.1.1, Section 3.1.1,
Section 4.8, and Section 5.6).

Testing. A seemingly straight-forward technique is to run a system and see if it behaves
as expected. In principle, testing can even be done by treating the system as a black box.
For example, the Jepsen project [3] tests real binaries on real clusters by injecting faults
into the cluster.

Since 2013, Jepsen has analyzed over two dozen databases, coordination services,
and queues—and we’ve found replica divergence, data loss, stale reads, read
skew, lock conflicts, and much more.

https://jepsen.io/analyses (accessed June 4, 2020)

A recent line of work [28, 83, 96] provides a theoretical explanation for this effectiveness.

A major challenge in testing is capturing and optimizing test coverage, i.e., “how much”
of a program has been exercised by tests. For realistic programs, the space of program
behaviors is unbounded in many dimensions, e.g., the data domain, number of processes
or threads, and length of executions. Thus, testing can never truly exercise all program
behaviors. So when are we done testing, and did we gain enough confidence?

Concurrent programs are particularly challenging to test. First, local state of concurrent
computations must be efficiently gathered, without perturbing the program under test
(e.g., [46]). Similar problems arise in monitoring (aka runtime verification). Second, tests
for concurrent programs are inevitably nondeterministic. The same input can lead to
many different behaviors because of uncontrollable timing, making certain bugs extremely
hard to reproduce.2 Systematic testing [90, 39] addresses this problem by gaining control
over the scheduler and driving executions towards “interesting” behaviors.

Static analysis. Instead of actually executing a program, a static analyzer processes the
source code of a program and produces a list of potential bugs. Technically, many static
analyses are cast in the abstract interpretation framework [33], as fixpoint computations
over suitable abstract domains. As an example, the Infer static analyzer supports data-race
detection in concurrent programs [15]. Static analyzers typically have to trade off precision
against annotation effort and efficiency.

Deductive verification. This thesis is concerned with formal proofs, rigorous math-
ematical arguments that show that all possible behaviors of a concurrent program are
correct. This very strong guarantees come at the price of requiring higher expertise (e.g.,
familiarity with mathematical logic) and manual effort.

2The term heisenbug, a pun on the name of Werner Heisenberg that alludes to the observer effect of
quantum mechanics, is often used in the context of concurrent programs.

https://jepsen.io/analyses


3

Deductive verification usually employs a program logic to connect programs with
assertions, and a proof system to derive valid conclusions about programs. Verifiers are
typically either implemented on top of interactive theorem provers like Coq or Isabelle
where proofs are written down explicitly (e.g., [116, 64, 104]), or tools that emit logical
verification conditions based on user annotations (like invariants) that are checked using a
theorem prover (e.g., [14, 77, 88]). Our work follows the latter approach.

Model checking. Model checking originated as a technique to systematically explore
the state space of systems modeled as finite state graphs (i.e., Kripke structures) [30, 101].
The idea was to replace proof construction by algorithmic search. Pioneering tools include
Spin [61] and SMV [85]. Approaches to address the combinatorial state explosion problem
include compositional techniques [7, 8, 31] which decompose the verification problem into
smaller subproblems, and partial-order methods [50] which reduce the state space by
exploiting commutativity.

(Concurrent) software systems give rise to an infinite state space. For certain restricted
classes of systems and properties, the verification problem stays decidable, e.g., based
on the theory of well-structured transition systems [45]. Abstraction refinement-based
verifiers like SLAM [13] and Blast [58] gradually refine a system abstraction (e.g., predicate
abstraction [51]) by analyzing counterexamples. Threader [54] and Weaver [44] follow
a similar approach for concurrent programs given as a parallel composition of a fixed
number of threads. Parameterized verification involves challenging formulas that rely on
quantification and set cardinality reasoning [111]. Bounded model checking compromises
on completeness by restricting the set of explored executions. For example, context-switch
bounding [99] or delay bounding [43] operates under the hypothesis that bugs can be
effectively discovered by focusing on certain schedules [89, 38].

In general, there is no clear separation between the above areas, and many approaches
borrow or combine ideas from different areas.

1.3 Deductive Verification of Concurrent Programs

In this section we review some fundamental notions of deductive verification, including
inductive invariants, reduction, and refinement.

1.3.1 Inductive Invariants

Imagine a program to be modeled as a transition system (Var , Init ,Next , Safe), where
Var is the set of program variables, Init it the initial-state predicate over Var , Next is
the transition predicate over Var ∪ Var ′ that describes all program transitions from one
state to the next, and Safe is a safety predicate over Var . We want to ensure that no
program execution can reach an unsafe state, i.e., for all sequences of state s1, . . . , sn with
s1 |= Init and si, s

′
i+1 |= Next for all pairs of consecutive states, sn |= Safe should hold. A

fundamental approach to achieve this is by means of finding an inductive invariant—a
predicate Inv over Var such that (1) Init =⇒ Inv , (2) Inv ∧ Next =⇒ Inv ′, and
(3) Inv =⇒ Safe. The invariant holds in the initial state, is preserved across transitions,
and does not hold in any unsafe state. Thus, Inv overapproximates the set of reachable
states and separates them from the unsafe states.



4

{x = 0}
{x = 0} {x = 0}

φ1 : {x = 0 ∨ x = 2} φ2 : {x = 0 ∨ x = 1}
x := x+ 1 x := x+ 2

ψ1 : {x = 1 ∨ x = 3} ψ2 : {x = 2 ∨ x = 3}
{ψ1 ∧ ψ2}
{x = 3}

{φ1 ∧ φ2}x := x+ 2 {φ1}
{ψ1 ∧ φ2}x := x+ 2 {ψ1}
{φ2 ∧ φ1}x := x+ 1 {φ2}
{ψ2 ∧ φ1}x := x+ 1 {ψ2}

Figure 1.1: Owicki-Gries proof of a simple concurrent program.

While elegant and intuitive in theory, modeling programs as transition systems has
severe limitations for verification in practice. The transition predicate Next has to encode
the program’s control flow, causing a case distinction over all possible program steps that
could be enabled in any given state. The need for case distinction is then carried over to
Inv , usually amplified and prone to complexity. Thus, transition relations are appropriate
to assign semantics to programs, but not suitable as the object of interaction for program
proofs.

In the world of sequential programs, Floyd [48] showed that program proofs can be
constructed by annotating each control location of a program with an inductive assertion.
Today we call the resulting proof system Floyd-Hoare logic [60], which forms the basis
of modern program verifiers [14]. The judgments in Floyd-Hoare logic are often written
as {φ} c {ψ}, with the intended meaning that if a command c executes from a state that
satisfies the precondition φ and terminates, then the state after executing c satisfies the
postcondition ψ. Can we have a proof rule for concurrent programs?

Owicki and Gries [95] offered the following rule for the parallel composition command.

Ψ1 : {φ1} c1 {ψ1} Ψ2 : {φ2} c2 {ψ2} Ψ1,Ψ2 interference-free

{φ1 ∧ φ2} c1 ∥ c2 {ψ1 ∧ ψ2}
To prove a property of the parallel composition of c1 and c2, both commands can be
proved separately. However, the resulting proofs Ψ1 and Ψ2 must be interference-free,
which means that no assertion used in Ψ1 can be invalidated by a command in c2, and
similarly for Ψ2 and c1. For example, let us prove

{x = 0}x := x+ 1 ∥ x := x+ 2 {x = 3},
where two threads increment the shared integer variable x by 1 and 2, respectively. Both
assignments to x are assumed to be atomic. Figure 1.1 shows a proof outline. In the left
thread, the precondition x = 0 is weakened to x = 0 ∨ x = 2, resulting in the postcondition
x = 1 ∨ x = 3 after x := x+ 1. In the right thread, x = 0 is weakened to x = 0 ∨ x = 1,
resulting in the postcondition x = 2 ∨ x = 3 after x := x+ 2. Together, ψ1 and ψ2 imply
x = 3. The prescribed non-interference conditions are shown on the right of Figure 1.1.
For example, φ1 ∧ φ2 implies x = 0, and thus after x := x+ 2 we have x = 2, which still
satisfies φ1.

It might came as a surprise that the weakenings to φ1 and φ2 allowed us to recover
the precise postcondition x = 3 from ψ1 and ψ2. Let us slightly modify the example such
that both threads increment x by 1 and prove

{x = 0}x := x+ 1 ∥ x := x+ 1 {x = 2}.



5

{x = 0}
[done1 := false; done2 := false]

{¬done1 ∧ x = (if done2 then 1 else 0)} {¬done2 ∧ x = (if done1 then 1 else 0)}
[x := x+ 1; done1 := true] [x := x+ 1; done2 := true]

{done1 ∧ x = (if done2 then 2 else 1)} {done2 ∧ x = (if done1 then 2 else 1)}
{x = 2}

Figure 1.2: Necessity of auxiliary variables in Owicki-Gries proofs.

Is it possible to adapt the proof in Figure 1.1? It is illustrative to try, but the answer is
no. Just referring to x in assertions is not enough. The assertions will be either too weak
to imply the postcondition x = 2, or too strong to be interference-free. The solution to
this problem is to add auxiliary variables to the program, which can be updated together
with regular program commands to store information that can then be used in assertions.
These auxiliary variables are often called ghost state, because they can see (i.e,. depend
on) the real program variables, but not vice versa. Figure 1.2 shows a proof outline that
uses the auxiliary Boolean variable done1 to remember if the left thread is before or after
its update to x, and a similar auxiliary variable done2 for the right thread. These variables
are updated from false to true together (i.e., atomically) with the respective increment to
x, indicated by [. . . ]. The reader can confirm that the assertions are valid, interference-free,
and imply the postcondition x = 2.

By flooding a program with enough auxiliary variables—essentially capturing the
program counter of every thread—the Owicki-Gries rule is complete [94]. That is, relative
to a strong enough assertion language, any valid Floyd-Hoare judgment can be proved. This
is good news in theory, but bad news in practice. As we see in Figure 1.2, the assertions
contain excessive case distinction, which becomes a major issue in more sophisticated
programs. Additionally, the assertions in one thread need to talk about the local state
of the other thread. Proof rules like rely-guarantee [63] aim for so called thread-modular
proofs, but such proofs do not always exist.

Having identified the invention of inductive invariants as the main challenge for verifying
concurrent programs, there are two ways forward.

In the first direction, we can work on automating invariant discovery, e.g., [54, 44]. A
common theme in many works on automation is the use of logical tools, like interpolation,
to find a suitable assertion language in which to search for proofs. Despite gradual progress,
the state-of-the-art in invariant inference for concurrent programs does not yet scale to
rich correctness properties of realistic systems.

In the second direction—which is the main topic of this thesis—we can work on
techniques and methodologies that aid interactive proof construction. Here, the focus is
on providing ways to decompose and structure a proof, splitting the mental activity into
manageable pieces, and ultimately making for a more pleasant and productive verification
experience.



6

1.3.2 Shared-Memory vs. Message-Passing Concurrency

Concurrent programming is often separated into two camps: shared-memory concurrency,
concerned with concurrent data structures accessed by multiple threads of a multiprocessors,
and message-passing concurrency, concerned with distributed processes that communicate
by exchanging messages via a network. Of course, a logical shared memory can actually be
distributed, and message passing can be performed on the same node. The point is that
both paradigms provide different structuring mechanisms. In particular, the reduction of
shared state in message passing is embraced by languages like Erlang and Go. However, in
a formal proof the state of communication channels remains globally shared and subject
to interference.

To reason about message-passing programs, the proof rule of Owicki and Gries was
adapted to the model of communicating sequential processes (CSPs) [79, 10, 9], and
later to asynchronous message passing [102], flush channels [24], and causally-ordered
delivery [106]. Essentially, these proof systems bake in the semantics of communica-
tion primitives (i.e., send/receive commands) and adequately specialize the necessary
noninterference obligations.

In our work, we do not treat message-passing primitives specially. They are modeled
as regular shared-state operations. The benefit is that (1) implementations can mix both
message-passing and shared-memory programming, and (2) proofs of the message-passing
part can be significantly simplified by not writing invariants directly on the low-level
network state, but first transforming the state representation to a more abstract one.

1.3.3 Reduction

Concurrent programs are usually not written for the sake of concurrency. Despite many
possible interleavings, we expect many interleavings to be “equivalent” in the sense of
producing the same observable effect. For example, two typical applications of concurrency
are (1) speeding up a computational task, and (2) replicating state to deal with faults. In
both cases, concurrency is not needed to produce a desired behavior. Instead, concurrency
has to be suitably controlled (via synchronization) to only produce “useful” behaviors.
Indeed, most consistency conditions for concurrent systems, like linearizability [59], define
the admissible concurrent interleavings in terms of an underlying sequential specification.

Recall the example from Figure 1.1. This example only has two possible interleavings,
x := x+ 1;x := x+ 2 and x := x+ 2;x := x+ 1. Do we really need to reason about both
of them, and—essentially—let the assertions enumerate the possible intermediate states
where x = 2 and x = 1, respectively? Since addition is commutative, the execution order in
this example does not matter. Thus, we can pick either one of the interleavings, prove it,
and argue that the other interleaving is “equivalent”. In general, to exploit commutativity
arguments to reduce the reasoning task to a subset of interleavings, we need to address
three problems:

1. How to establish the commutativity of operations?

2. How to specify which subset of interleavings to consider?

3. How to justify that all other interleavings are implicitly covered?



7

ab recv a b recv b

ab recv b a recv a

(1)

send a a send b ab

send b b send a ab

(2)

a recv a send b b

a send b ab recv a b

(3)

a send b ab recv b a

a �����XXXXXrecv b

(4)

Figure 1.3: Over a bag channel, receive is a right mover and send is a left mover, but
not vice versa. Clouds represent the (unordered) content of a channel, and a and b are
values received from and sent to the channel by different threads. (1) receive a moves right
of receive b; (2) send b moves left of send a; (3) send b moves left of receive a (receive a
moves right of send b); (4) send b does not move right of receive b (receive b does not
move left of send b).

In a seminal paper, Lipton [80] introduced the notion of right movers and left movers.
In Lipton’s original definition, an operation is a right mover, if in every execution of a given
program, the operation can be commuted to the right (i.e., later in time) of any operation
performed by another thread, without changing the value of any program variable in the
final state. Analogously, an operation is a left mover, if it can be commuted to the left
(i.e., earlier in time) of any operation performed by another thread. He noted [80]:

Essentially, a right mover is a statement that performs a “seize” while a left
mover is a statement that performs a “release” of a “resource.”

Of a somewhat different flavor, we illustrate in Figure 1.3 that over a channel with bag
semantics—modeling a network where messages can get reordered—the send operation is
a left mover and the receive operation is a right mover.

Lipton’s reduction replaces a sequence c1; . . . ; cn in the program with the indivisible
statement [c1; . . . ; cn], provided, for some i, c1, . . . , ci−1 are right movers and ci+1, . . . , cn are
left movers (ci is unconstrained). Lipton’s original study focused on classifying the “wait”
primitive P (a) = [assume a > 0; a := a− 1] and the “signal” primitive V (a) = [a := a+ 1]
over semaphore variables a as right and left movers, respectively, and showing that a
reduced program halts if and only if the original program halts.

In [47], the idea of movers was picked up to define a type system that proves the
atomicity of methods in a concurrent object-oriented programming language. This type
system is based on annotations that declare if reads and writes to fields are protected by
locks. The work on the QED verifier [41] introduced the notion of gated atomic actions,
which describe an atomic operation not only as a set of transitions (i.e., possible state
updates), but additionally contain a gate that states a condition that must be satisfied
when the operation executes (like an assertion). Gates can capture contextual information,
which makes it useful to establish commutativity properties of atomic action by looking
at them in isolation. Concretely, instead of a priori classifying specific operations as
movers, mover types are established by a pairwise logical commutativity analysis over the



8

set of gated atomic actions of a program. Using gated atomic actions as the technical
substrate, Elmas et al. [41] identified abstraction as a symbiotic counterpart to reduction,
which enables iterative program simplification. Abstracting a gated atomic action (i.e.,
strengthening its gate or weakening its transition relation) can strengthen its mover type,
making reduction applicable. Reduction forms new coarser-grained atomic actions, which
can be abstracted to make reduction applicable again. For example, a plain write operation
is not commutative. However, stating in the gate that the write operation is executed
while holding a lock makes it a mover.

Reduction is in the service of invariant discovery, because inductive invariants for a
reduced program can be much simpler than for the original program, more than compen-
sating for the reduction argument. In this thesis we present new reduction-based proof
rules for asynchronous programs and distributed systems.

Reduction bears resemblance to the notion of robustness [17, 20, 22]. However, instead
of simplifying a program, these robustness results interpret the same program under two
different semantics. Concretely, under certain conditions a program running on a weaker
semantics can be verified assuming a stronger semantics, or alternatively, a property of a
program verified under a strong semantics is preserved when the program runs under a
weaker semantics.

1.3.4 Refinement

Program development by stepwise refinement [117] is the idea of developing a program
by starting with a high-level abstract specification, and gradually refining it down to
a concrete low-level implementation. Alternatively, a low-level implementation can be
gradually abstracted to prove a high-level specification. Or both top-down and bottom-up
design are combined. Formal verification techniques based on stepwise refinement have
long been advocated, in theory, for the construction of verified concurrent programs (e.g.,
[11, 103, 37]).

Going back to transition system models, consider a concrete transition system C and an
abstract transition system A. A standard way to show that C correctly implements A is the
specification of a refinement mapping from the concrete states of C to the abstract states of
A.3 In a so called forward-simulation argument, the refinement mapping is shown to map
every concrete step of C to an abstract step of A, thus mapping every concrete behavior
to some allowed abstract behavior. In general, the existence of refinement mappings relies
on two types of auxiliary variables [4]: history variables that “remember” something about
the past of an execution, and prophecy variables that “predict” the future of an execution.
Lynch and Vaandrager [82] present further simulation techniques.

The work in this thesis is in the context of the Civl verifier, originally described by
Hawblitzl et al. [56]. As a refinement-based verifier, Civl advocates the verification of
concurrent programs across multiple layers of refinement. A core, distinguishing design
feature of Civl is that each layer in a refinement proof remains a structured program,
i.e., a program with procedures, imperative control flow, structured parallelism, and
asynchronous concurrency. This is in contrast to previous refinement-based verifiers,
like TLA+ [76] or Event-B [5], which use a representation of concurrent systems as flat
transition system. The benefits of using a structured program representation include

3Given the directionality, it would perhaps be more appropriate to talk about an abstraction mapping.



9

(1) naturally bridging the gap to real implementations, and (2) preserving the structure
that is present in program syntax. In Civl, proof steps correspond to a small, simplifying
program transformation, which make atomic actions more and more coarse-grained and
abstract, and the program less and less concurrent. The invariants necessary to justify
each step are comparatively simple, and the overall decomposition makes proofs easier to
construct and reuse. The implementation of Civl translates the verification problem into
a set of verification conditions that are automatically discharged by a theorem prover.

1.4 Contributions and Outline

This dissertation contributes new techniques and methodologies to simplify the construction
of formal correctness proof of concurrent programs. Broadly speaking, this contributions
fall into two classes. First, Chapter 2 and Chapter 3 present the foundations of building
a verifier using a structured-program representation. Second, Chapter 4 and Chapter 5
present new reduction-based proof rules to enable simpler proofs of asynchronous programs.

Each chapter corresponds to a self-contained conference paper, which outlines the
challenges of a particular piece in our framework, presents a technical development,
describes its implementation, demonstrates its usefulness on case studies, and compares
to related work. To allow each chapter to focus on a specific aspect, the notation and
formalization is not unified across chapters.

In summary, this dissertation makes the following main contributions.

Layered concurrent programs. We present layered concurrent programs (Chapter 2),
a compact formalism to represent all programs in a multi-layer refinement proof as one
syntactic unit, avoiding excessive duplication of program parts that remain unchanged
across refinement steps.

Yield invariants. We introduce yield invariants (Chapter 3), a new specification idiom
that encapsulates inductive invariants as named, parameterized, and reusable entities,
which can be invoked specific to a call site (similar to procedures).

Refinement along program structure. We present a powerful refinement rule (Chap-
ter 3), that decomposes the verification problem over structured concurrent programs into
modular verification conditions. This proof rule integrates yield invariants with a system
of linear permissions to enhance local reasoning. It supports both global and local variable
introduction and hiding, and modular abstraction of recursive procedures.

Synchronization. We present a reduction principle called synchronization (Chapter 4),
which converts asynchronous calls into synchronous calls. The verification task is simplified,
because instead of reasoning about an effect to occur asynchronously at a later time in an
execution, we can reason about the effect to happen immediately.

Inductive sequentialization. We present a reduction principle called inductive syn-
chronization (Chapter 5), which reduces reasoning about distributed systems to a single
representative execution. We show that even complicated protocols like Paxos admit
simple sequential reductions.



10

Pending asyncs. We extend gated atomic actions with the notion of pending asyncs.
Using pending asyncs, gated atomic actions do not only represent the effect of updating
shared global variables, but also the effect of creating asynchronous computation. Pending
asyncs were first introduced in the work on synchronization. The refinement rule in
Chapter 3 describes the “creation” of pending asyncs, while Chapter 4 and Chapter 5
describe techniques to “eliminate” pending asyncs form atomic actions.

Civl verifier. All techniques presented in this dissertation are implemented in the Civl
verifier, which is publicly available as part of Boogie [2, 1]. In particular, the theory in
Chapter 2 and Chapter 3 was the basis of a new design and implementation of Civl, and
the techniques in Chapter 4 and Chapter 5 are available as new proof tactics that integrate
symbiotically with the already existing tactics. Our implementation was used to show the
applicability and usefulness of our methodology in multiple case studies.



11

2 Layered Concurrent Programs

Abstract. We present layered concurrent programs, a compact and expressive
notation for specifying refinement proofs of concurrent programs. A layered
concurrent program specifies a sequence of connected concurrent programs,
from most concrete to most abstract, such that common parts of different
programs are written exactly once. These programs are expressed in the
ordinary syntax of imperative concurrent programs using gated atomic actions,
sequencing, choice, and (recursive) procedure calls. Each concurrent program
is automatically extracted from the layered program. We reduce refinement to
the safety of a sequence of concurrent checker programs, one each to justify
the connection between every two consecutive concurrent programs. These
checker programs are also automatically extracted from the layered program.
Layered concurrent programs have been implemented in the Civl verifier which
has been successfully used for the verification of several complex concurrent
programs.

2.1 Introduction

Refinement is an approach to program correctness in which a program is expressed
at multiple levels of abstraction. For example, we could have a sequence of programs
P1, . . . ,Ph,Ph+1 where P1 is the most concrete and the Ph+1 is the most abstract. Program
P1 can be compiled and executed efficiently, Ph+1 is obviously correct, and the correctness
of Pi is guaranteed by the correctness of Pi+1 for all i ∈ [1, h]. These three properties
together ensure that P1 is both efficient and correct. To use the refinement approach,
the programmer must come up with each version Pi of the program and a proof that
the correctness of Pi+1 implies the correctness of Pi. This proof typically establishes a
connection from every behavior of Pi to some behavior of Pi+1.

Refinement is an attractive approach to the verified construction of complex programs
for a number of reasons. First, instead of constructing a single monolithic proof of P1,
the programmer constructs a collection of localized proofs establishing the connection
between Pi and Pi+1 for each i ∈ [1, h]. Each localized proof is considerably simpler than
the overall proof because it only needs to reason about the (relatively small) difference
between adjacent programs. Second, different localized proofs can be performed using
different reasoning methods, e.g., interactive deduction, automated testing, or even informal
reasoning. Finally, refinement naturally supports a bidirectional approach to correctness—



12

P1

C1

P2 Pi

Ci

Pi+1

· · ·
Ph

Ch

Ph+1

· · ·

abstraction refinement

Figure 2.1: Concurrent programs Pi and connecting checker programs Ci represented by a
layered concurrent program LP .

bottom-up verification of a concrete program via successive abstraction or top-down
derivation from an abstract program via successive concretization.

This paper explores the use of refinement to reason about concurrent programs. Most
refinement-oriented approaches model a concurrent program as a flat transition system, a
representation that is useful for abstract programs but becomes increasingly cumbersome
for a concrete implementation. To realize the goal of verified construction of efficient and
implementable concurrent programs, we must be able to uniformly and compactly represent
both highly-detailed and highly-abstract concurrent programs. This paper introduces
layered concurrent programs as such a representation.

A layered concurrent program LP represents a sequence P1, . . . ,Ph,Ph+1 of concurrent
programs such that common parts of different programs are written exactly once. These
programs are expressed not as flat transition systems but in the ordinary syntax of
imperative concurrent programs using gated atomic actions [41], sequencing, choice, and
(recursive) procedure calls. Our programming language is accompanied by a type system
that allows each Pi to be automatically extracted from LP . Finally, refinement between
Pi and Pi+1 is encoded as the safety of a checker program Ci which is also automatically
extracted from LP . Thus, the verification of P1 is split into the verification of h concurrent
checker programs C1, . . . , Ch such that Ci connects Pi and Pi+1 (Figure 2.1).

We highlight two crucial aspects of our approach. First, while the programs Pi have
an interleaved (i.e., preemptive) semantics, we verify the checker programs Ci under a
cooperative semantics in which preemptions occur only at procedure calls. Our type
system [47] based on the theory of right and left movers [80] ensures that the cooperative
behaviors of Ci cover all preemptive behaviors of Pi. Second, establishing the safety of
checker programs is not tied to any particular verification technique. Any applicable
technique can be used. In particular, different layers can be verified using different
techniques, allowing for great flexibility in verification options.

2.1.1 Related Work

This paper formalizes, clarifies, and extends the most important aspect of the design of
Civl [56], a deductive verifier for layered concurrent programs. Hawblitzel et al. [57]
present a partial explanation of Civl by formalizing the connection between two concurrent
programs as sound program transformations. In this paper, we provide the first formal
account for layered concurrent programs to represent all concurrent programs in a multi-
layered refinement proof, thereby establishing a new foundation for the verified construction
of concurrent programs.

Civl is the successor to the Qed [41] verifier which combined a type system for mover
types with logical reasoning based on verification conditions. Qed enabled the specification
of a layered proof but required each layer to be expressed in a separate file leading to code



13

duplication. Layered programs reduce redundant work in a layered proof by enabling each
piece of code to be written exactly once. Qed also introduced the idea of abstracting an
atomic action to enable attaching a stronger mover type to it. This idea is incorporated
naturally in layered programs by allowing a concrete atomic action to be wrapped in a
procedure whose specification is a more abstract atomic action with a more precise mover
type.

Event-B [5] is a modeling language that supports refinement of systems expressed
as interleaved composition of events, each specified as a top-level transition relation.
Verification of Event-B specifications is supported by the Rodin [6] toolset which has
been used to model and verify several systems of industrial significance. TLA+ [76] also
specifies systems as a flat transition system, enables refinement proofs, and is more general
because it supports liveness specifications. Our approach to refinement is different from
Event-B and TLA+ for several reasons. First, Event-B and TLA+ model different versions
of the program as separate flat transition systems whereas our work models them as
different layers of a single layered concurrent program, exploiting the standard structuring
mechanisms of imperative programs. Second, Event-B and TLA+ connect the concrete
program to the abstract program via an explicitly specified refinement mapping. Thus, the
guarantee provided by the refinement proof is contingent upon trusting both the abstract
program and the refinement mapping. In our approach, once the abstract program is
proved to be free of failures, the trusted part of the specification is confined to the gates
of atomic actions in the concrete program. Furthermore, the programmer never explicitly
specifies a refinement mapping and is only engaged in proving the correctness of checker
programs.

The methodology of refinement mappings has been used for compositional verification
of hardware designs [86, 87]. The focus in this work is to decompose a large refinement
proof connecting two versions of a hardware design into a collection of smaller proofs. A
variety of techniques including compositional reasoning (converting a large problem to
several small problems) and customized abstractions (for converting infinite-state to finite-
state problems) are used to create small and finite-state verification problems for a model
checker. This work is mostly orthogonal to our contribution of layered programs. Rather,
it could be considered an approach to decompose the verification of each (potentially large)
checker program encoded by a layered concurrent program.

2.2 Concurrent Programs

In this section we introduce a concurrent programming language. The syntax of our
programming language is summarized in Figure 2.2.

Preliminaries. Let Val be a set of values containing the Booleans. The set of variables
Var is partitioned into global variables GVar and local variables LVar . A store σ is a
mapping from variables to values, a gate ρ is a set of stores, and a transition relation τ is
a binary relation between stores.

Atomic actions. A fundamental notion in our approach is that of an atomic action.
An atomic action captures an indivisible operation on the program state together with its
precondition, providing a universal representation for both low-level machine operations



14

Val ⊇ B
v ∈ Var = GVar ∪ LVar

I, O, L ⊆ LVar
σ ∈ Store = Var → Val
ρ ∈ Gate = 2Store

τ ∈ Trans = 2Store×Store

A ∈ Action
P,Q ∈ Proc
ι, o ∈ IOMap = LVar ⇀ LVar

gs ∈ 2GVar

as ∈ A ↦→ (I, O, ρ, τ)
ps ∈ P ↦→ (I, O, L, s)
m ∈ Proc ∪ Action
I ∈ 2Store

P ∈ Prog ::= (gs , as , ps ,m, I)

s ∈ Stmt ::= skip | s ; s | if ρ then s else s | pcall (A, ι, o) (P, ι, o) (A, ι, o)

Figure 2.2: Concurrent programs

(e.g., reading a variable from memory) and high-level abstractions (e.g., atomic procedure
summaries). Most importantly for reasoning purposes, our programming language confines
all accesses to global variables to atomic actions. Formally, an atomic action is a tuple
(I, O, ρ, τ). The semantics of an atomic action in an execution is to first evaluate the gate
ρ in the current state. If the gate evaluates to false the execution fails, otherwise the
program state is updated according to the transition relation τ . Input variables in I can
be read by ρ and τ , and output variables in O can be written by τ .

Remark 1. Atomic actions subsume many standard statements. In particular, (nonde-
terministic) assignments, assertions, and assumptions. The following table shows some
examples for programs over variables x and y.

command ρ τ
x := x+ y true x′ = x+ y ∧ y′ = y
havoc x true y′ = y
assert x < y x < y x′ = x ∧ y′ = y
assume x < y true x < y ∧ x′ = x ∧ y′ = y

Procedures. A procedure is a tuple (I, O, L, s) where I, O, L are the input, output, and
local variables of the procedure, and s is a statement composed from skip, sequencing, if,
and parallel call statements. Since only atomic actions can refer to global variables, the
variables accessed in if conditions are restricted to the inputs, outputs, and locals of the
enclosing procedure. The meaning of skip, sequencing, and if is as expected and we focus
on parallel calls.

Pcalls. A parallel call (pcall, for short) pcall (A, ι, o) (P, ι, o) (A, ι, o) consists of a
sequence of invocations of atomic actions and procedures. We refer to the invocations
as the arms of the pcall. In particular (A, ι, o) is an atomic-action arm and (P, ι, o) is a
procedure arm. An atomic-action arm executes the called atomic action, and a procedure
arm creates a child thread that executes the statement of the called procedure. The
parent thread is blocked until all arms of the pcall finish. In the standard semantics the
order of arms does not matter, but our verification technique will allow us to consider



15

the atomic action arms before and after the procedure arms to execute in the specified
order. Parameter passing is expressed using partial mappings ι, o between local variables;
ι maps formal inputs of the callee to actual inputs of the caller, and o maps actual outputs
of the caller to formal outputs of the callee. Since we do not want to introduce races
on local variables, the outputs of all arms must be disjoint and the output of one arm
cannot be an input to another arm. Finally, notice that our general notion of a pcall
subsumes sequential statements (single atomic-action arm), synchronous procedure calls
(single procedure arm), and unbounded thread creation (recursive procedure arm).

Concurrent programs. A concurrent program P is a tuple (gs , as , ps ,m, I), where gs
is a finite set of global variables used by the program, as is a finite mapping from action
names A to atomic actions, ps is a finite mapping from procedure names P to procedures,
m is either a procedure or action name that denotes the entry point for program executions,
and I is a set of initial stores. For convenience we will liberally use action and procedure
names to refer to the corresponding atomic actions and procedures.

Semantics. Let P = (gs , as , ps ,m, I) be a fixed concurrent program. A state consists of
a global store assigning values to the global variables and a pool of threads, each consisting
of a local store assigning values to local variables and a statement that remains to be
executed. An execution is a sequence of states, where from each state to the next some
thread is selected to execute one step. Every step that switches the executing thread is
called a preemption (also called a context switch). We distinguish between two semantics
that differ in (1) preemption points, and (2) the order of executing the arms of a pcall.

In preemptive semantics, a preemption is allowed anywhere and the arms of a pcall are
arbitrarily interleaved. In cooperative semantics, a preemption is allowed only at the call
and return of a procedure, and the arms of a pcall are executed as follows. First, the leading
atomic-action arms are executed from left to right without preemption, then all procedure
arms are executed arbitrarily interleaved, and finally the trailing atomic-action arms are
executed, again from left to right without preemption. In other words, a preemption is
only allowed when a procedure arm of a pcall creates a new thread and when a thread
terminates.

For P we only consider executions that start with a single thread that execute m
from a store in I. P is called safe if there is no failing execution, i.e., an execution that
executes an atomic action whose gate evaluates to false. We write Safe(P) if P is safe
under preemptive semantics, and CSafe(P) if P is safe under cooperative semantics.

2.2.1 Running Example

In this section, we introduce a sequence of three concurrent programs (Figure 2.3) to
illustrate features of our concurrent programming language and the layered approach to
program correctness. Consider the program P lock

1 in Figure 2.3(a). The program uses a
single global Boolean variable b which is accessed by the two atomic actions CAS and
RESET. The compare-and-swap action CAS atomically reads the current value of b and
either sets b from false to true and returns true, or leaves b true and returns false. The
RESET action sets b to false and has a gate (represented as an assertion) that states
that the action must only be called when b is true. Using these actions, the procedures
Enter and Leave implement a spinlock as follows. Enter calls the CAS action and retries



16

(a) P lock
1

var b : bool

proc Main()
if (*)

pcall Worker(), Main()

proc Worker()

pcall Alloc()
pcall Enter()
pcall Leave()

proc Alloc() : ()
skip

proc Enter()
var success : bool
pcall success := CAS()
if (success)

skip
else

pcall Enter()

proc Leave()
pcall RESET()
skip

atomic CAS() : (success : bool)
if (b) success := false
else success, b := true, true

atomic RESET()
assert b
b := false

(b) P lock
2

var lock : int
var linear slots : set<int>

proc Main()
if (*)

pcall Worker(), Main()

proc Worker()
var linear tid : int
pcall tid := ALLOC()
pcall ACQUIRE(tid)
pcall RELEASE(tid)

right ALLOC() : (linear tid : int)
assume tid != 0 && tid in slots
slots := slots - tid

right ACQUIRE(linear tid : int)
assert tid != 0
assume lock == 0
lock := tid

left RELEASE(linear tid : int)
assert tid != 0 && lock == tid
lock := 0

(c) P lock
3

both SKIP()
skip

Figure 2.3: Lock example

(through recursion on itself) until it succeeds to set b from false to true. Leave just calls
the RESET action which sets b back to false and thus allows another thread executing
Enter to stop spinning. Finally, the procedures Main and Worker serve as a simple client.
Main uses a pcall inside a nondeterministic if statement to create an unbounded number of
concurrent worker threads, which just acquire the lock by calling Enter and then release
the lock again by calling Leave. The call to the empty procedure Alloc is an artifact of
our extraction from a layered concurrent program and can be removed as an optimization.

Proving P lock
1 safe amounts to showing that RESET is never called with b set to false,

which expresses that P lock
1 follows a locking discipline of releasing only previously acquired

locks. Doing this proof directly on P lock
1 has two drawbacks. First, the proof must relate

the possible values of b with the program counters of all running threads. In general,
this approach requires sound introduction of ghost code and results in complicated case
distinctions in program invariants. Second, the proof is not reusable across different lock
implementations. The correctness of the client does not specifically depend on using a
spinlock over a Boolean variable, and thus the proof should not as well. We show how our
refinement-based approach addresses both problems.

Program P lock
2 in Figure 2.3(b) is an abstraction of P lock

1 that introduces an abstract
lock specification. The global variable b is replaced by lock which ranges over integer
thread identifiers (0 is a dedicated value indicating that the lock is available). The
procedures Alloc, Enter and Leave are replaced by the atomic actions ALLOC, ACQUIRE
and RELEASE, respectively. ALLOC allocates unique and non-zero thread identifiers using a



17

set of integers slot to store the identifiers not allocated so far. ACQUIRE blocks executions
where the lock is not available (assume lock == 0) and sets lock to the identifier of
the acquiring thread. RELEASE asserts that the releasing thread holds the lock and sets
lock to 0. Thus, the connection between P lock

1 and P lock
2 is given by the invariant b <==>

lock != 0 which justifies that Enter refines ACQUIRE and Leave refines RELEASE. The
potential safety violation in P lock

1 by the gate of RESET is preserved in P lock
2 by the gate of

RELEASE. In fact, the safety of P lock
2 expresses the stronger locking discipline that the lock

can only be released by the thread that acquired it.

Reasoning in terms of ACQUIRE and RELEASE instead of Enter and Leave is more
general, but it is also simpler! Figure 2.3(b) declares atomic actions with a mover type [47],
right for right mover, and left for left mover. A right mover executed by a thread
commutes to the right of any action executed by a different thread. Similarly, a left mover
executed by thread commutes to the left of any action executed by a different thread. A
sequence of right movers followed by at most one non-mover followed by a sequence of
left movers in a thread can be considered atomic [80]. The reason is that any interleaved
execution can be rearranged (by commuting atomic actions), such that these actions
execute consecutively. For P lock

2 this means that Worker is atomic and thus the gate of
RELEASE can be discharged by pure sequential reasoning; ALLOC guarantees tid != 0
and after executing ACQUIRE we have lock == tid. As a result, we finally obtain that
the atomic action SKIP in P lock

3 (Figure 2.3(c)) is a sound abstraction of procedure Main
in P lock

2 . Hence, we showed that program P lock
1 is safe by soundly abstracting it to P lock

3 , a
program that is trivially safe.

The correctness of right and left annotations on ACQUIRE and RELEASE, respec-
tively, depends on pair-wise commutativity checks among atomic actions in P lock

2 . These
commutativity checks will fail unless we exploit the fact that every thread identifier allo-
cated by Worker using the ALLOC action is unique. For instance, to show that ACQUIRE
executed by a thread commutes to the right of RELEASE executed by a different thread,
it must be known that the parameters tid to these actions are distinct from each other.
The linear annotation on the local variables named tid and the global variable slots
(which is a set of integers) is used to communicate this information.

The overall invariant encoded by the linear annotation is that the set of values stored
in slots and in local linear variables of active stack frames across all threads are pairwise
disjoint. This invariant is guaranteed by a combination of a linear type system [113] and
logical reasoning on the code of all atomic actions. The linear type system ensures using
a flow analysis that a value stored in a linear variable in an active stack frame is not
copied into another linear variable via an assignment. Each atomic action must ensure
that its state update preserves the disjointness invariant for linear variables. For actions
ACQUIRE and RELEASE, which do not modify any linear variables, this reasoning is trivial.
However, action ALLOC modifies slots and updates the linear output parameter tid. Its
correctness depends on the (semantic) fact that the value put into tid is removed from
slots; this reasoning can be done using automated theorem provers.

2.3 Layered Concurrent Programs

A layered concurrent program represents a sequence of concurrent programs that are
connected to each other. That is, the programs derived from a layered concurrent program
share syntactic structure, but differ in the granularity of the atomic actions and the set



18

of variables they are expressed over. In a layered concurrent program, we associate layer
numbers and layer ranges with variables (both global and local), atomic actions, and
procedures. These layer numbers control the introduction and hiding of program variables
and the summarization of compound operations into atomic actions, and thus provide the
scaffolding of a refinement relation. Concretely, this section shows how the concurrent
programs P lock

1 , P lock
2 , and P lock

3 (Figure 2.3) and their connections can all be expressed in
a single layered concurrent program. In Section 2.4, we discuss how to check refinement
between the successive concurrent programs encoded in a layered concurrent program.

Syntax. The syntax of layered concurrent programs is summarized in Figure 2.4. Let
N be the set of non-negative integers and I the set of nonempty intervals [a, b]. We refer
to integers as layer numbers and intervals as layer ranges. A layered concurrent program
LP is a tuple (GS ,AS , IS ,PS ,m, I) which, similarly to concurrent programs, consists of
global variables, atomic actions, and procedures, with the following differences.

1. GS maps global variables to layer ranges. For GS (v) = [a, b] we say that v is
introduced at layer a and available up to layer b.

2. AS assigns a layer range r to atomic actions denoting the layers at which an action
exists.

3. IS (with a disjoint domain from AS ) distinguishes a special type of atomic actions
called introduction actions. Introduction actions have a single layer number n
and are responsible for assigning meaning to the variables introduced at layer n.
Correspondingly, statements in layered concurrent programs are extended with an
icall statement for calling introduction actions.

4. PS assigns a layer number n, a layer number mapping for local variables ns , and an
atomic action A to procedures. We call n the disappearing layer and A the refined
atomic action. For every local variable v, ns(v) is the introduction layer of v.

The pcallα statement in a layered concurrent program differs from the pcall
statement in concurrent programs in two ways. First, it can only have procedure
arms. Second, it has a parameter α which is either ε (unannotated pcall) or the
index of one of its arms (annotated pcall). We usually omit writing ε in unannotated
pcalls.

5. m is a procedure name.

The top layer h of a layered concurrent program is the disappearing layer of m.

Intuition behind layer numbers. Recall that a layered concurrent program LP should
represent a sequence of h + 1 concurrent programs P1, · · · ,Ph+1 that are connected by
a sequence of h checker programs C1, · · · , Ch (cf. Figure 2.1). Before we provide formal
definitions, let us get some intuition on two core mechanisms: global variable introduction
and procedure abstraction/refinement.

Let v be a global variable with layer range [a, b]. The meaning of this layer range is
that the “first” program that contains v is Ca, the checker program connecting Pa and
Pa+1. In particular, v is not yet part of Pa. In Ca the introduction actions at layer a can



19

[a, b] = {x | a, b, x ∈ N ∧ a ≤ x ≤ b}
n, α ∈ N
r ∈ I = {[a, b] | a ≤ b}

ns ∈ LVar ⇀ N

GS ∈ GVar ⇀ I
AS ∈ A ↦→ (I, O, ρ, τ, r)
IS ∈ A ↦→ (I, O, ρ, τ, n)
PS ∈ P ↦→ (I, O, L, s, n, ns , A)
m ∈ Proc
I ∈ 2Store

LP ∈ LayeredProg ::= (GS ,AS , IS ,PS ,m, I)

s ∈ Stmt ::= · · · | icall (A, ι, o) | pcallα (Pi, ιi, oi)i∈[1,k] (α ∈ {ε} ∪ [1, k])

Figure 2.4: Layered Concurrent Programs

modify v and thus assign its meaning in terms of all other available variables. Then v is
part of Pa+1 and all programs up to and including Pb. The “last” program containing v is
Cb. In other words, when going from a program Pi to Pi+1 the variables with upper bound
i disappear and the variables with lower bound i are introduced; the checker program Ci
has access to both and establishes their relationship.

Let P be a procedure with disappearing layer n and refined atomic action A. The
meaning of the disappearing layer is that P exists in all programs from P1 up to and
including Pn. In Pn+1 and above every invocation of P is replaced by an invocation of A.
To ensure that this replacement is sound, the checker program Cn performs a refinement
check that ensures that every execution of P behaves like A. Observe that the body
of procedure P itself changes from P1 to Pn according to the disappearing layer of the
procedures it calls.

With the above intuition in mind it is clear that the layer annotations in a layered
concurrent program cannot be arbitrary. For example, if procedure P calls a procedure
Q, then Q cannot have a higher disappearing layer than P , for Q could introduce further
behaviors into the program after P was replaced by A, and those behaviors are not
captured by A.

2.3.1 Type Checker

We describe the constraints that need to be satisfied for a layered concurrent program to
be well-formed. A full formalization as a type checker with top-level judgment ⊢ LP is
given in Figure 2.5. For completeness, the type checker includes standard constraints (e.g.,
variable scoping, parameter passing, etc.) that we are not going to discuss.

(Atomic action)/(Introduction action). Global variables can only be accessed by
atomic actions and introduction actions. For a global variable v with layer range [a, b],
introduction actions with layer number a are allowed to modify v (for sound variable
introduction), and atomic actions with a layer range contained in [a+ 1, b] have access to
v. Introduction actions must be nonblocking, which means that every state that satisfies
the gate must have a possible transition to take. This ensures that introduction actions
only assign meaning to introduced variables but do not exclude any program behavior.



20

(Program)
dom(AS ) ∩ dom(IS ) = ∅
PS (m) = ( , , , , h, , Am)
AS (Am) = ( , , , , r)
h+ 1 ∈ r
∀ A ∈ dom(AS ) : (GS ,AS ) ⊢ A
∀ A ∈ dom(IS ) : (GS , IS ) ⊢ A
∀ P ∈ dom(PS ) : (AS , IS ,PS ) ⊢ P
⊢ (GS ,AS , IS ,PS ,m, I)

(Atomic action)
AS (A) = (I,O, ρ, τ, r)
Disjoint(I,O)

∀ v ∈ ReadVars(ρ, τ) : v ∈ I ∨ r ⊆ ĜS (v)

∀ v ∈ WriteVars(τ) : v ∈ O ∨ r ⊆ ĜS (v)
(GS ,AS ) ⊢ A

(Introduction action)
IS (A) = (I,O, ρ, τ, n)
Disjoint(I,O)
∀ v ∈ ReadVars(ρ, τ) : v ∈ I ∨ n ∈ GS (v)
∀ v ∈ WriteVars(τ) : v ∈ O ∨GS (v) = [n, ]
Nonblocking(ρ, τ)
(GS , IS ) ⊢ A

(Procedure)
PS (P ) = (I,O, L, s, n,ns, A)
AS (A) = (I,O, , , )
Disjoint(I,O, L)
∀ v ∈ I ∪O ∪ L : ns(v) ≤ n
(AS , IS ,PS ), P ⊢ s
(AS , IS ,PS ) ⊢ P

(Skip)
(AS , IS ,PS ), P ⊢ skip

(Sequence)
(AS , IS ,PS ), P ⊢ s1 (AS , IS ,PS ), P ⊢ s2
(AS , IS ,PS ), P ⊢ s1 ; s2

(If)
PS (P ) = (I, , L, , ,ns, )
∀ x ∈ ReadVars(ρ) : x ∈ I ∪ L ∧ ns(x) = 0
(AS , IS ,PS ), P ⊢ s1 (AS , IS ,PS ), P ⊢ s2
(AS , IS ,PS ), P ⊢ if ρ then s1 else s2

(Parameter passing)
dom(ι) = I ′ dom(o) ⊆ O ∪ L
img(ι) ⊆ I ∪O ∪ L img(o) ⊆ O′

ValidIO(ι, o, I, O, L, I ′, O′)

(Introduction call)
PS (P ) = (IP , OP , LP , , nP ,nsP , )
IS (A) = (IA, OA, , τ, nA)
ValidIO(ι, o, IP , OP , LP , IA, OA)
nA = nP

∀ v ∈ dom(o) : nsP (v) = nP

(AS , IS ,PS ), P ⊢ icall (A, ι, o)

(Parallel call)
∀ i ̸= j : dom(oi) ∩ dom(oj) = ∅

dom(oi) ∩ img(ιj) = ∅
∀ i : PS (P ) = (IP , OP , LP , , nP ,nsP , )

PS (Qi) = (Ii, Oi, , , ni,nsi, Ai)
AS (Ai) = ( , , , , ri)
ValidIO(ιi, oi, IP , OP , LP , Ii, Oi)
∀ v ∈ dom(ιi) : nsP (ιi(v)) ≤ nsi(v)
∀ v ∈ dom(oi) : nsi(oi(v)) ≤ nsP (v)
ni ≤ nP [ni + 1, nP ] ⊆ ri
i = α =⇒ ni = nP ∧OP ⊆ dom(oi)
i ̸= α ∧ ni = nP =⇒ dom(oi) ⊆ LP

∃ i : n1 ≤ · · · ≤ ni ≥ · · · ≥ nk

(AS , IS ,PS ), P ⊢ pcallα (Qi, ιi, oi)i∈[1,k]

ĜS (v) = [a+ 1, b] for GS (v) = [a, b]

ReadVars(ρ) = {v | ∃ σ, a : ρ(σ) ̸= ρ(σ[v ↦→ a])} ∪
ReadVars(τ) = {v | ∃ σ, σ′, a : (σ, σ′) ∈ τ ∧ (σ[v ↦→ a], σ′) ̸∈ τ}
ReadVars(ρ, τ) = ReadVars(ρ) ∪ ReadVars(τ)

WriteVars(τ) = {v | ∃ σ, σ′ : (σ, σ′) ∈ τ ∧ σ(v) ̸= σ′(v)}
Nonblocking(ρ, τ) = ∀ σ ∈ ρ : ∃ σ′ : (σ, σ′) ∈ τ

Figure 2.5: Type checking rules for layered concurrent programs



21

(If). Procedure bodies change from layer to layer because calls to procedures become
calls to atomic actions. But the control-flow structure within a procedure is preserved
across layers. Therefore (local) variables accessed in an if condition must be available on
all layers to ensure that the if statement is well-defined on every layer.

(Introduction call). Let A be an introduction action with layer number n. Since A
modifies global variables introduced at layer n, icalls to A are only allowed from procedures
with disappearing layer n. Similarly, the formal output parameters of an icall to A must
have introduction layer n. The icall is only preserved in Cn.

(Parallel call). All arms in a pcall must be procedure arms invoking a procedure with a
disappearing layer less than or equal to the disappearing layer of the caller. Furthermore,
above the disappearing layer of the callee its refined atomic action must be available up
to the disappearing layer of the caller. Parameter passing can only be well-defined if
the actual inputs exist before the formal inputs, and the formal outputs exist before the
actual outputs. The sequence of disappearing layers of the procedures in a pcall must be
monotonically increasing and then decreasing, such that the resulting pcall in the extracted
programs consists of procedure arms surrounded by atomic-action arms on every layer.

Annotated pcalls are only used for invocations to procedures with the same disappearing
layer n as the caller. In particular, during refinement checking in Cn only the arm with
index α is allowed to modify the global state, which must be according to the refined
atomic action of the caller. The remaining arms must leave the global state unchanged.

2.3.2 Concurrent Program Extraction

Let LP = (GS ,AS , IS ,PS ,m, I) be a layered concurrent program such that PS (m) =
( , , , , h, , Am). We show how to extract the programs P1, · · · ,Ph+1 by defining a
function Γℓ(LP) such that Pℓ = Γℓ(LP) for every ℓ ∈ [1, h + 1]. For a local variable
layer mapping ns we define the set of local variables with layer number less then ℓ as
ns|ℓ = {v | ns(v) < ℓ}. Now the extraction function Γℓ is defined as

Γℓ(LP) = (gs , as , ps ,m′, I),

where

gs = {v | GS (v) = [a, b] ∧ ℓ ∈ [a+ 1, b]},
as = {A ↦→ (I, O, ρ, τ) | AS (A) = (I, O, ρ, τ, r) ∧ ℓ ∈ r},
ps = {P ↦→ (I ∩ ns|ℓ, O ∩ ns|ℓ, L ∩ ns|ℓ,ΓP

ℓ (s)) | PS (P ) = (I, O, L, s, n, ns , ) ∧ ℓ ≤ n},

m′ =

{
m if ℓ ∈ [1, h]
Am if ℓ = h+ 1

,



22

and the extraction of a statement in the body of procedure P is given by

ΓP
ℓ (skip) = skip,

ΓP
ℓ (s1 ; s2) = ΓP

ℓ (s1) ; Γ
P
ℓ (s2),

ΓP
ℓ (if ρ then s1 else s2) = if ρ then ΓP

ℓ (s1) else ΓP
ℓ (s2),

ΓP
ℓ (icall (A, ι, o)) = skip,

ΓP
ℓ (pcallα (Q, ι, o)) = pcall (X, ι|nsQ|ℓ , o|nsP |ℓ),

for
PS (P ) = ( , , , , , nsP , )
PS (Q) = ( , , , , n, nsQ, A)

and X =

{
Q if ℓ ≤ n
A if ℓ > n

.

Thus Pℓ includes the global and local variables that were introduced before ℓ and the atomic
actions with ℓ in their layer range. Furthermore, it does not contain introduction actions
and correspondingly all icall statements are removed. Every arm of a pcall statement,
depending on the disappearing layer n of the called procedure Q, either remains a procedure
arm to Q, or is replaced by an atomic-action arm to A, the atomic action refined by Q.
The input and output mappings are restricted to the local variables at layer ℓ. The set of
initial stores of Pℓ is the same as for LP , since stores range over all program variables.

In our programming language, loops are subsumed by the more general mechanism
of recursive procedure calls. Observe that Pℓ can indeed have recursive procedure calls,
because our type checking rules (Figure 2.5) allow a pcall to invoke a procedure with the
same disappearing layer as the caller.

2.3.3 Running Example

We return to our lock example from Section 2.2.1. Figure 2.6 shows its implementation
as the layered concurrent program LP lock . Layer annotations are indicated using an @
symbol. For example, the global variable b has layer range [0, 1], all occurrences of local
variable tid have introduction layer 1, the atomic action ACQUIRE has layer range [2, 2],
and the introduction action iSetLock has layer number 1.

First, observe that LP lock is well-formed, i.e., ⊢ LP lock . Then it is an easy exercise to
verify that Γℓ(LP lock) = P lock

ℓ for ℓ ∈ [1, 3]. Let us focus on procedure Worker. In P lock
1

(Figure 2.3(a)) tid does not exist, and correspondingly Alloc, Enter, and Leave do not
have input respectively output parameters. Furthermore, the icall in the body of Alloc is
replaced with skip. In P lock

2 (Figure 2.3(b)) we have tid and the calls to Alloc, Enter,
and Leave are replaced with their respective refined atomic actions ALLOC, ACQUIRE, and
RELEASE. The only annotated pcall in LP lock is the recursive call to Enter.

In addition to representing the concurrent programs in Figure 2.3, the program
LP lock also encodes the connection between them via introduction actions and calls.
The introduction action iSetLock updates lock to maintain the relationship between
lock and b, expressed by the predicate InvLock. It is called in Enter in case the CAS
operation successfully set b to true, and in Leave when b is set to false. The introduction
action iIncr implements linear thread identifiers using the integer variables pos which
points to the next value that can be allocated. For every allocation, the current value of
pos is returned as the new thread identifier and pos is incremented.

The variable slots is introduced at layer 1 to represent the set of unallocated identifiers.
It contains all integers no less than pos, an invariant that is expressed by the predicate



23

LP lock

var b@[0,1] : bool
var lock@[1,2] : int
var pos@[1,1] : int
var linear slots@[1,2] : set<int>

predicate InvLock
b <==> lock != 0

predicate InvAlloc
pos > 0 && slots == [pos,infinity)

init InvLock && InvAlloc

both SKIP@3 ()
skip

proc Main@2()
refines SKIP

if (*)
pcall Worker(), Main()

proc Worker@2()
refines SKIP

var linear tid@1 : int
pcall tid := Alloc()
pcall Enter(tid)
pcall Leave(tid)

right ALLOC@[2,2]() : (linear tid : int)
assume tid != 0 && tid in slots
slots := slots - tid

proc Alloc@1() : (linear tid@1 : int)
refines ALLOC

icall tid := iIncr()

iaction iIncr@1() : (linear tid : int)
assert InvAlloc
tid := pos
pos := pos + 1
slots := slots - tid

right ACQUIRE@[2,2](linear tid : int)
assert tid != 0
assume lock == 0
lock := tid

left RELEASE@[2,2](linear tid : int)
assert tid != 0 && lock == tid
lock := 0

proc Enter@1(linear tid@1 : int)
refines ACQUIRE

var success@0 : bool
pcall success := Cas()
if (success)

icall iSetLock(tid)
else

pcall1 Enter(tid)

proc Leave@1(linear tid@1 : int)
refines RELEASE

pcall Reset()
icall iSetLock(0)

iaction iSetLock@1(v : int)
lock := v

atomic CAS@[1,1]() : (success : bool)
if (b) success := false
else success, b := true, true

atomic RESET@[1,1]()
assert b
b := false

proc Cas@0() : (success@0 : bool)
refines CAS

proc Reset@0()
refines RESET

Figure 2.6: Lock example (layered concurrent program)

InvAlloc and maintained by the code of iIncr. The purpose of slots is to encode
linear allocation of thread identifiers in a way that the body of iIncr can be locally shown
to preserve the disjointness invariant for linear variables; slots plays a similar role in the
specification of the atomic action ALLOC in P2. The variable pos is both introduced and
hidden at layer 1 so that it exists neither in P lock

1 nor P lock
2 . However, pos is present in

the checker program C1 that connects P lock
1 and P lock

2 .

The bodies of procedures Cas and Reset are not shown in Figure 2.6 because they are
not needed. They disappear at layer 0 and are replaced by the atomic actions CAS and
RESET, respectively, in P lock

1 .

The degree of compactness afforded by layered programs (as in Figure 2.6) over separate
specification of each concurrent program (as in Figure 2.3) increases rapidly with the size
of the program and the maximum depth of procedure calls. In our experience, for realistic
programs such as a concurrent garbage collector [57] or a data-race detector [115], the
saving in code duplication is significant.



24

2.4 Refinement Checking

Section 2.3 described how a layered concurrent program LP encodes a sequence of
concurrent programs P1, . . . ,Ph,Ph+1. In this section, we show how the safety of any
concurrent program in the sequence is implied by the safety of its successor, ultimately
allowing the safety of P1 to be established by the safety of Ph+1.

There are three ingredients to connecting Pℓ to Pℓ+1 for any ℓ ∈ [1, h]—reduction,
projection, and abstraction. Reduction allows us to conclude the safety of a concurrent
program under preemptive semantics by proving safety only under cooperative semantics.

Theorem 1 (Reduction). Let P be a concurrent program. If MSafe(P) and CSafe(P),
then Safe(P).

The judgment MSafe(P) uses logical commutativity reasoning and mover types to
ensure that cooperative safety is sufficient for preemptive safety (Section 2.4.1). We use
this theorem to justify reasoning about CSafe(Pℓ) rather than Safe(Pℓ).

The next step in connecting Pℓ to Pℓ+1 is to introduce computation introduced at
layer ℓ into the cooperative semantics of Pℓ. This computation comprises global and local
variables together with introduction actions and calls to them. We refer to the resulting
program at layer ℓ as P̃ℓ.

Theorem 2 (Projection). Let LP be a layered concurrent program with top layer h and

ℓ ∈ [1, h]. If CSafe(P̃ℓ), then CSafe(Pℓ).

Since introduction actions are nonblocking and P̃ℓ is safe under cooperative semantics,
every cooperative execution of Pℓ can be obtained by projecting away the computation
introduced at layer ℓ. This observation allows us to conclude that every cooperative
execution of Pℓ is also safe.

Finally, we check that the safety of the cooperative semantics of P̃ℓ is ensured by the
safety of the preemptive semantics of the next concurrent program Pℓ+1. This connection is
established by reasoning about the cooperative semantics of a concurrent checker program
Cℓ that is automatically constructed from LP .

Theorem 3 (Abstraction). Let LP be a layered concurrent program with top layer h and

ℓ ∈ [1, h]. If CSafe(Cℓ) and Safe(Pℓ+1), then CSafe(P̃ℓ).

The checker program Cℓ is obtained by instrumenting the code of P̃ℓ with extra variables
and procedures that enable checking that procedures disappearing at layer ℓ refine their
atomic action specifications (Section 2.4.2).

Our refinement check between two consecutive layers is summarized by the following
corollary of Theorem 1-3.

Corollary 1. Let LP be a layered concurrent program with top layer h and ℓ ∈ [1, h]. If
MSafe(Pℓ), CSafe(Cℓ) and Safe(Pℓ+1), then Safe(Pℓ).

The soundness of our refinement checking methodology for layered concurrent programs
is obtained by repeated application of Corollary 1.

Corollary 2. Let LP be a layered concurrent program with top layer h. If MSafe(Pℓ) and
CSafe(Cℓ) for all ℓ ∈ [1, h] and Safe(Ph+1), then Safe(P1).



25

A

RM LM

B,R,L,N,Y

B,R,Y B,L,Y

Y

Figure 2.7: Atomicity automaton.

2.4.1 From Preemptive to Cooperative Semantics

We present the judgment MSafe(P) that allows us to reason about a concurrent program
P under cooperative semantics instead of preemptive semantics. Intuitively, we want to
use the commutativity of individual atomic actions to rearrange the steps of any execution
under preemptive semantics in such a way that it corresponds to an execution under
cooperative semantics. We consider mappings M ∈ Action → {N,R,L,B} that assign
mover types to atomic actions; N for non-mover, R for right mover, L for left mover, and
B for both mover. The judgment MSafe(P) requires a mapping M that satisfies two
conditions.

First, the atomic actions in P must satisfy the following logical commutativity condi-
tions [57], which can be discharged by a theorem prover.

• Commutativity: If A1 is a right mover or A2 is a left mover, then the effect of A1

followed by A2 can also be achieved by A2 followed by A1.

• Forward preservation: If A1 is a right mover or A2 is a left mover, then the failure
of A2 after A1 implies that A2 must also fail before A1.

• Backward preservation: If A2 is a left mover (and A1 is an arbitrary), then the failure
of A1 before A2 implies that A1 must also fail after A2.

• Nonblocking: If A is a left mover, then A cannot block.

Second, the sequence of atomic actions in preemptive executions of P must be such
that the desired rearrangement into cooperative executions is possible. Given a preemptive
execution, consider, for each thread individually, a labeling of execution steps where atomic
action steps are labeled with their mover type and procedure calls and returns are labeled
with Y (for yield). The nondeterministic atomicity automaton A in Figure 2.7 defines
all allowed sequences. Intuitively, when we map the execution steps of a thread to a run
in the automaton, the state RM denotes that we are in the right mover phase in which
we can stay until the occurrence of a non-right mover (L or N). Then we can stay in
the left mover phase (state LM) by executing left movers, until a preemption point (Y)
takes us back to RM. Let E be the mapping from edge labels to the set of edges that
contain the label, e.g., E(R) = {RM → RM,RM → LM}. Thus we have a representation
of mover types as sets of edges in A, and we define E(A) = E(M(A)). Notice that the
set representation is closed under relation composition ◦ and intersection, and behaves as
expected, e.g., E(R) ◦ E(L) = E(N).

Now we define an intraprocedural control flow analysis that lifts E to a mapping Ê
on statements. Intuitively, x → y ∈ Ê(s) means that every execution of the statement
s has a run in A from x to y. Our analysis does not have to be interprocedural, since



26

procedure calls and returns are labeled with Y, allowing every possible state transition in
A. MSafe(P) requires Ê(s) ̸= ∅ for every procedure body s in P, where Ê is defined as
follows:

Ê(skip) = E(B) Ê(s1 ; s2) = Ê(s1) ◦ Ê(s2) Ê(if ρ then s1 else s2) = Ê(s1) ∩ Ê(s2)

Ê(pcall A1P A2) =

{
E∗(A1A2) if P = ε
E(L) ◦ E∗(A1) ◦ E(Y) ◦ E∗(A2) ◦ E(R) if P ̸= ε

Skip is a both mover, sequencing composes edges, and if takes the edges possible in
both branches. In the arms of a pcall we omit writing the input and output maps because
they are irrelevant to the analysis. Let us first focus on the case P = ε with no procedure
arms. In the preemptive semantics all arms are arbitrarily interleaved and correspondingly
we define the function

E∗(A1 · · ·An) =
⋂
τ∈Sn

E(Aτ(1)) ◦ · · · ◦ E(Aτ(n))

to consider all possible permutations (τ ranges over the symmetric group Sn) and take
the edges possible in all permutations. Observe that E∗ evaluates to non-empty in exactly
four cases: E(N) for {B}∗N{B}∗, E(B) for {B}∗, E(R) for {R,B}∗ \ {B}∗, and E(L) for
{L,B}∗ \ {B}∗. These are the mover-type sequences for which an arbitrary permutation
(coming from a preemptive execution) can be rearranged to the order given by the pcall
(corresponding to cooperative execution).

In the case P ̸= ε there is a preemption point under cooperative semantics between A1

and A2, the actions in A1 are executed in order before the preemption, and the actions in
A2 are executed in order after the preemption. To ensure that the cooperative execution
can simulate an arbitrarily interleaved preemptive execution of the pcall, we must be able
to move actions in A1 to the left and actions in A2 to the right of the preemption point.
We enforce this condition by requiring that A1 is all left (or both) movers and A2 all right
(or both) movers, expressed by the leading E(L) and trailing E(R) in the edge composition.

2.4.2 Refinement Checker Programs

In this section, we describe the construction of checker programs that justify the formal
connection between successive concurrent programs in a layered concurrent program. The
description is done by example. In particular, we show the checker program C lock

1 that
establishes the connection between P lock

1 and P lock
2 (Figure 2.3) of our running example.

Overview. Cooperative semantics splits any execution of P lock
1 into a sequence of

preemption-free execution fragments separated by preemptions. Verification of C lock
1

must ensure that for all such executions, the set of procedures that disappear at layer 1
behave like their atomic action specifications. That is, the procedures Enter and Leave
must behave like their specifications ACQUIRE and RELEASE, respectively. It is important
to note that this goal of checking refinement is easier than verifying that P lock

1 is safe.
Refinement checking may succeed even though P lock

1 fails; the guarantee of refinement is
that such a failure can be simulated by a failure in P lock

2 . The construction of C lock
1 can

be understood in two steps. First, the program P̃ lock
1 shown in Figure 2.8 extends P lock

1

(Figure 2.3(a)) with the variables introduced at layer 1 (globals lock, pos, slots and



27

P̃ lock
1

var b : bool
var lock : int
var pos : int
var linear slots : set<int>

proc Main()
if (*)

pcall Worker(), Main()

proc Worker()
var linear tid : int
pcall tid := Alloc()
pcall Enter(tid)
pcall Leave(tid)

proc Alloc() : (linear tid : int)
icall tid := iIncr()

iaction iIncr() : (tid : int)
assert InvAlloc
tid := pos
pos := pos + 1
slots := slots - tid

proc Enter(linear tid : int)
var success : bool
pcall success := CAS()
if (success)

icall iSetLock(tid)
else

pcall Enter(tid)

proc Leave(linear tid : int)
pcall RESET()
icall iSetLock(0)

iaction iSetLock(v : int)
lock := v

atomic CAS() : (success : bool)
if (b) success := false
else success, b := true, true

atomic RESET()
assert b
b := false

Figure 2.8: Lock example (variable introduction at layer 1)

locals tid) and the corresponding introduction actions (iIncr and iSetLock). Second,
C lock
1 is obtained from P̃ lock

1 by instrumenting the procedures to encode the refinement
check, described in the remainder of this section.

Context for refinement. There are two kinds of procedures, those that continue to
exist at layer 2 (such as Main and Worker) and those that disappear at layer 1 (such as
Enter and Leave). C lock

1 does not need to verify anything about the first kind. These
procedures only provide the context for refinement checking and thus all invocation of
an atomic action (I, O, ρ, τ) in any atomic-action arm of a pcall is converted into the
invocation of a fresh atomic action (I, O, true, ρ ∧ τ). In other words, the assertions
in procedures that continue to exist at layer 2 are converted into assumptions for the
refinement checking at layer 1; these assertions are verified during the refinement checking
on a higher layer. In our example, Main and Worker do not have atomic-action arms,
although this is possible in general.

Refinement instrumentation. We illustrate the instrumentation of procedures Enter
and Leave in Figure 2.9. The core idea is to track updates by preemption-free execution
fragments to the shared variables that continue to exist at layer 2. There are two such
variables—lock and slots. We capture snapshots of lock and slots in the local
variables _lock and _slots and use these snapshots to check that the updates to lock
and slots behave according to the refined atomic action. In general, any path from the
start to the end of the body of a procedure may comprise many preemption-free execution
fragments. The checker program must ensure that exactly one of these fragments behaves
like the specified atomic action; all other fragments must leave lock and slot unchanged.
To track whether the atomic action has already happened, we use two local Boolean
variables—pc and done. Both variables are initialized to false, get updated to true during



28

C lock
1

1 macro *CHANGED* is !(lock == _lock && slots == _slots)
2 macro *RELEASE* is lock == 0 && slots == _slots
3 macro *ACQUIRE* is _lock == 0 && lock == tid && slots == _slots
4

5 proc Leave(linear tid) # Leave must behave like RELEASE
6 var _lock, _slots, pc, done
7 pc, done := false, false # initialize pc and done
8 _lock, _slots := lock, slots # take snapshot of global variables

9 assume pc || (tid != 0 && lock == tid) # assume gate of RELEASE
10

11 pcall RESET()
12 icall iSetLock(0)
13

14 assert *CHANGED* ==> (!pc && *RELEASE*) # state change must be the first and like RELEASE
15 pc := pc || *CHANGED* # track if state changed

16 done := done || *RELEASE* # track if RELEASE happened

17

18 assert done # check that RELEASE happened

19

20 proc Enter(linear tid) # Enter must behave like ACQUIRE
21 var success, _lock, _slots, pc, done
22 pc, done := false, false # initialize pc and done
23 _lock, _slots := lock, slots # take snapshot of global variables

24 assume pc || tid != 0 # assume gate of ACQUIRE
25

26 pcall success := CAS()
27 if (success)
28 icall iSetLock(tid)
29 else
30 assert *CHANGED* ==> (!pc && *ACQUIRE*) # state change must be the first and like ACQUIRE
31 pc := pc || *CHANGED* # track if state changed

32 done := done || *ACQUIRE* # track if ACQUIRE happened

33

34 if (*) # then: check refinement of caller

35 pcall pc := Check_Enter_Enter(tid, # check annotated procedure arm

36 tid, pc) # in fresh procedure (defined below)

37 done := true # above call ensures that ACQUIRE happened

38 else # else: check refinement of callee

39 pcall Enter(tid) # explore behavior of callee

40 assume false # block after return (only then is relevant below)

41

42 _lock, _slots := lock, slots # take snapshot of global variables

43 assume pc || tid != 0 # assume gate of ACQUIRE
44

45 assert *CHANGED* ==> (!pc && *ACQUIRE*) # state change must be the first and like ACQUIRE
46 pc := pc || *CHANGED* # track if state changed

47 done := done || *ACQUIRE* # track if ACQUIRE happened

48

49 assert done # check that ACQUIRE happened

50

51 proc Check_Enter_Enter(tid, x, pc) : (pc’) # check annotated pcall from Enter to Enter
52 var _lock, _slots
53 _lock, _slots := lock, slots # take snapshot of global variables

54 assume pc || tid != 0 # assume gate of ACQUIRE
55

56 pcall ACQUIRE(x) # use ACQUIRE to ‘‘simulate’’ call to Enter
57

58 assert *ACQUIRE* # check that ACQUIRE happened

59 assert *CHANGED* ==> !pc # state change must be the first

60 pc’ := pc || *CHANGED* # track if state changed

Figure 2.9: Instrumented procedures Enter and Leave (layer 1 checker program)



29

the execution, and remain at true thereafter. The variable pc is set to true at the end
of the first preemption-free execution fragment that modifies the tracked state, which is
expressed by the macro *CHANGED* on line 1. The variable done is set to true at the end
of the first preemption-free execution fragment that behaves like the refined atomic action.
For that, the macros *RELEASE* and *ACQUIRE* on lines 2 and 3 express the transition
relations of RELEASE and ACQUIRE, respectively. Observe that we have the invariant pc
==> done. The reason we need both pc and done is to handle the case where the refined
atomic action may stutter (i.e., leave the state unchanged).

Instrumenting Leave. We first look at the instrumentation of Leave. Line 8 initializes
the snapshot variables. Recall that a preemption inside the code of a procedure is
introduced only at a pcall containing a procedure arm. Consequently, the body of Leave is
preemption-free and we need to check refinement across a single execution fragment. This
checking is done by lines 14-16. The assertion on line 14 checks that if any tracked variable
has changed since the last snapshot, (1) such a change happens for the first time (!pc),
and (2) the current value is related to the snapshot value according to the specification of
RELEASE. Line 15 updates pc to track whether any change to the tracked variables has
happened so far. Line 16 updates done to track whether RELEASE has happened so far.
The assertion at line 18 checks that RELEASE has indeed happened before Leave returns.
The assumption at line 9 blocks those executions which can be simulated by the failure
of RELEASE. It achieves this effect by assuming the gate of RELEASE in states where pc
is still false (i.e., RELEASE has not yet happened). The assumption yields the constraint
lock != 0 which together with the invariant InvLock (Figure 2.6) proves that the gate
of RESET does not fail.

The verification of Leave illustrates an important principle of our approach to refine-
ment. The gates of atomic actions invoked by a procedure P disappearing at layer ℓ are
verified using a combination of invariants established on Cℓ and pending assertions at layer
ℓ+1 encoded as the gate of the atomic action refined by P . For Leave specifically, assert
b in RESET is propagated to assert tid != nil && lock == tid in RELEASE. The
latter assertion is verified in the checker program C lock

2 when Worker, the caller of RELEASE,
is shown to refine the action SKIP which is guaranteed not to fail since its gate is true.

Instrumenting Enter. The most sophisticated feature in a concurrent program is a
pcall. The instrumentation of Leave explains the instrumentation of the simplest kind
of pcall with only atomic-action arms. We now illustrate the instrumentation of a pcall
containing a procedure arm using the procedure Enter which refines the atomic action
ACQUIRE and contains a pcall to Enter itself. The instrumentation of this pcall is contained
in lines 30-43.

A pcall with a procedure arm is challenging for two reasons. First, the callee disappears
at the same layer as the caller so the checker program must reason about refinement for
both the caller and the callee. This challenge is addressed by the code in lines 34-40. At
line 34, we introduce a nondeterministic choice between two code paths—then branch
to check refinement of the caller and else branch to check refinement of the callee. An
explanation for this nondeterministic choice is given in the next two paragraphs. Second,
a pcall with a procedure arm introduces a preemption creating multiple preemption-free
execution fragments. This challenge is addressed by two pieces of code. First, we check
that lock and slots are updated correctly (lines 30-32) by the preemption-free execution



30

fragment ending before the pcall. Second, we update the snapshot variables (line 42) to
enable the verification of the preemption-free execution fragment beginning after the pcall.

Lines 35-37 in the then branch check refinement against the atomic action specification
of the caller, exploiting the atomic action specification of the callee. The actual verification
is performed in a fresh procedure Check_Enter_Enter invoked on line 35. Notice that
this procedure depends on both the caller and the callee (indicated in colors), and that
it preserves a necessary preemption point. The procedure has input parameters tid to
receive the input of the caller (for refinement checking) and x to receive the input of
the callee (to generate the behavior of the callee). Furthermore, pc may be updated in
Check_Enter_Enter and thus passed as both an input and output parameter. In the
body of the procedure, the invocation of action ACQUIRE on line 56 overapproximates the
behavior of the callee. In the layered concurrent program (Figure 2.6), the (recursive) pcall
to Enter in the body of Enter is annotated with 1. This annotation indicates that for any
execution passing through this pcall, ACQUIRE is deemed to occur during the execution
of its unique arm. This is reflected in the checker program by updating done to true on
line 37; the update is justified because of the assertion in Check_Enter_Enter at line 58.
If the pcall being translated was instead unannotated, line 37 would be omitted.

Lines 39-40 in the else branch ensure that using the atomic action specification of
the callee on line 56 is justified. Allowing the execution to continue to the callee ensures
that the called procedure is invoked in all states allowed by P1. However, the execution is
blocked once the call returns to ensure that downstream code sees the side-effect on pc
and the snapshot variables.

To summarize, the crux of our instrumentation of procedure arms is to combine
refinement checking of caller and callee. We explore the behaviors of the callee to check
its refinement. At the same time, we exploit the atomic action specification of the callee
to check refinement of the caller.

Instrumenting unannotated procedure arms. Procedure Enter illustrates the in-
strumentation of an annotated procedure arm. The instrumentation of an unannotated
procedure arm (both in an annotated or unannotated pcall) is simpler, because we only
need to check that the tracked state is not modified. For such an arm to a procedure
refining atomic action Action, we introduce a procedure Check_Action (which is in-
dependent of the caller) comprising three instructions: take snapshots, pcall A, and
assert !*CHANGED*.

Pcalls with multiple arms. Our examples show the instrumentation of pcalls with
a single arm. Handling multiple arms is straightforward, since each arm is translated
independently. Atomic action arms stay unmodified, annotated procedure arms are
replaced with the corresponding Check_Caller_Callee procedure, and unannotated
procedure arms are replaced with the corresponding Check_Action procedure.

Output parameters. Our examples illustrate refinement checking for atomic actions
that have no output parameters. In general, a procedure and its atomic action specification
may return values in output parameters. We handle this generalization but lack of space
does not allow us to present the technical details.



31

2.5 Conclusion

In this paper, we presented layered concurrent programs, a programming notation to
succinctly capture a multi-layered refinement proof capable of connecting a deeply-detailed
implementation to a highly-abstract specification. We presented an algorithm to extract
from the concurrent layered program the individual concurrent programs, from the most
concrete to the most abstract. We also presented an algorithm to extract a collection
of refinement checker programs that establish the connection among the sequence of
concurrent programs encoded by the layered concurrent program. The cooperative safety
of the checker programs and the preemptive safety of the most abstract concurrent program
suffices to prove the preemptive safety of the most concrete concurrent program.

Layered programs have been implemented in Civl, a deductive verifier for concurrent
programs, implemented as a conservative extension to the Boogie verifier [14]. Civl has
been used to verify a complex concurrent garbage collector [56] and a state-of-the-art
data-race detection algorithm [115]. In addition to these two large benchmarks, around
fifty smaller programs (including a ticket lock and a lock-free stack) are available at
https://github.com/boogie-org/boogie.

There are several directions for future work. We did not discuss how to verify an
individual checker program. Civl uses the Owicki-Gries method [95] and rely-guarantee
reasoning [63] to verify checker programs. But researchers are exploring many different
techniques for verification of concurrent programs. It would be interesting to investigate
whether heterogeneous techniques could be brought to bear on checker programs at different
layers.

In this paper, we focused exclusively on verification and did not discuss code generation,
an essential aspect of any programming system targeting the construction of verified
programs. There is a lot of work to be done in connecting the most concrete program in a
concurrent layered program to executable code. Most likely, different execution platforms
will impose different obligations on the most concrete program and the general idea of
layered concurrent programs would be specialized for different target platforms.

Scalable verification is a challenge as the size of programs being verified increases.
Traditionally, scalability has been addressed using modular verification techniques but
only for single-layer programs. It would be interesting to explore modularity techniques
for concurrent layered programs in the context of a refinement-oriented proof system.

Layered concurrent programs bring new challenges and opportunities to the design
of programming languages and development environments. Integrating layers into a
programming language requires intuitive syntax to specify layer information and atomic
actions. For example, ordered layer names can be more readable and easier to refactor
than layer numbers. An integrated development environment could provide different views
of the layered concurrent program. For example, it could show the concurrent program,
the checker program, and the introduced code at a particular layer. Any updates made in
these views should be automatically reflected back into the layered concurrent program.

Acknowledgments. We thank Hana Chockler, Stephen Freund, Thomas A. Henzinger,
Viktor Toman, and James R. Wilcox for comments that improved this paper. This research
was supported in part by the Austrian Science Fund (FWF) under grants S11402-N23
(RiSE/SHiNE) and Z211-N23 (Wittgenstein Award).

https://github.com/boogie-org/boogie


32



33

3 Refinement for Structured
Concurrent Programs

Abstract. This paper presents a foundation for refining concurrent programs
with structured control flow. The verification problem is decomposed into
subproblems that aid interactive program development, proof reuse, and au-
tomation. The formalization in this paper is the basis of a new design and
implementation of the Civl verifier.

3.1 Introduction

We present a solution to the problem of proving that no execution of a concurrent program
leads to a failure. This problem is equivalent to proving an arbitrary safety property
on the program. In deductive verification, a proof system decomposes this verification
problem into a set of proof obligations (or verification conditions), and discharging these
obligations implies the correctness of the program. At its core, any proof system depends
on inductive invariants, and, in general, these have to be supplied manually. Inventing
an inductive invariant is especially challenging for concurrent programs, since it has to
capture complicated relationships over the entire program state, across all concurrent
computations. Thus, the main practical obstacle to deductive verification is a suitable
interaction mode for the programmer to invent and supply the necessary proof hints.
This paper develops and implements a systematic conceptual framework for supplying
these proof hints on a structured representation of the concurrent program, specifically
eliminating the need to write complex invariants on the low-level encoding of the program
as a flat transition system.

The Civl verifier [56, 70] addresses the aforementioned challenge by advocating layered
refinement over structured concurrent programs. Instead of the monolithic approach that
requires the programmer to prove the safety of a program P directly, Civl allows the
programmer to specify a chain of increasingly simpler programs P = P0,P1, . . . ,Pn = P ′

such that the safety of Pi implies the safety of Pi−1 for all i ∈ [1, n], thus transferring
the safety obligation on P to P ′. The overall correctness of the program is established
piecemeal by focusing on the invariant required for each refinement step separately. While
the programmer does the creative work of specifying the chain of programs and the
inductive invariant justifying each link in the chain, the tool automatically constructs the
verification conditions underlying each refinement step.

The core principle of a layered refinement proof in Civl is iterative program sim-
plification through two kinds of creative reasoning. First, the programmer must think
about the primitive atomic actions used to specify a particular program Pi in the chain of



34

programs. These atomic actions must be chosen to have useful commutativity properties
which allow the tool to provably eliminate preemptions at many control locations in Pi,
thus creating large preemption-free execution fragments. Second, the programmer must
think about the justification for the transformation of Pi into the next program Pi+1.
This transformation may be complex because (1) some of the variables in Pi may become
irrelevant, (2) new variables may be needed for the primitive atomic actions in Pi+1, and
(3) the transformation may simplify complex control flow (branching, procedure calls,
recursion, etc.) into a single step that executes an atomic action. This paper focuses on
the necessary foundation and tool support for this second kind of creative reasoning.

We present our technique on an idealized yet general language RefPL, suitable for
expressing structured parallelism, asynchronous computation, atomic actions of arbitrary
granularity, and dynamically-scoped preemption-free code fragments. Using the design
of RefPL and the formalization of its operational semantics, we present two technical
contributions.

Our first contribution is a general proof rule for soundly abstracting a recursive RefPL
program P into another RefPL program P ′ that hides subsets of global variables, local
variables, procedures, and atomic actions in P . Our proof rule goes beyond Civl in two
ways. First, it provides the capability to hide local variables of procedures, specifically
parameters, in addition to global variables. This capability allows us to replace a procedure
with an atomic action with a smaller interface by hiding the extra parameters. Refinement
proofs are simplified because it becomes easy to introduce local snapshots of global variables
needed for specifications, pass these snapshots around as parameters to procedures, and
finally recover the original interface by hiding these extra parameters. Second, unlike
Civl our proof rule is capable of performing refinement proofs on arbitrarily recursive
programs. Since hiding low-level details is the core principle of the layered refinement
methodology, our proof rule contributes towards increasing the expressiveness of refinement
proofs compared to Civl.

Our proof rule depends on invariants that constrain the reachable states of the program.
Our second contribution, an aid to our refinement rule but also independently useful, is a
new specification idiom called yield invariants—named, parameterized, and interference-
free invariants that can be called in parallel with ordinary procedures to soundly constrain
the interference possible at yields within the called procedure. Since a yield invariant is
named, its definition is separate from its invocation, thereby allowing proofs of interference-
freedom to be performed once and reused for each call site. Since it is parameterized, it
can be specialized to the needs of a call site by passing suitable input parameters.

Reasoning with yield invariants becomes difficult in concurrent programs when the
absence of interference must be justified using facts referring to local variables of different
procedures executing in different threads. The alternative of using global ghost variables
that have the same information as local variables is theoretically possible but impossibly
tedious. We observe that local proofs for many of these programming patterns can be
achieved by exploiting permissions that are redistributed by atomic actions and otherwise
passed around the program without duplication via input and output parameters of
procedures. To track permissions, we enhance the interface of yield invariants, procedures,
and atomic actions with annotations that satisfy a discipline enforced by a combination
of linear typing [114] over procedure bodies and logical reasoning over the transitions of
atomic actions.

The formalization in this paper is the basis of a new design and implementation of



35

the Civl verifier. We hope that Civl will serve researchers as a viable platform for
experimenting with optimizations and implementation decisions.

To summarize, this paper makes the following contributions:

• It presents a core language RefPL for expressing modular proofs of refinement over
structured concurrent programs. The formulation of refinement for RefPL is general
and allows the user to encode verification of an arbitrary safety property as refinement
verification. Furthermore, RefPL enables the construction of layered proofs [70] of
safety via iterated refinement.

• A refinement proof for RefPL is modular and decomposed along program syntax
through the use of yield invariants. The interfaces to procedures, actions, and yield
invariants exploit a linear typing discipline [114] that enhances local verification
through the use of permissions.

• Finally, we present a robust implementation of the refinement rule and yield invariants
in the Civl verifier.

3.1.1 Related Work

Formal verification techniques based on stepwise refinement have long been advocated,
in theory, for construction of verified programs (e.g., [11, 103, 37]). This paper takes
its inspiration from TLA [76] and Event-B [5, 6] which popularized refinement as an
approach for reasoning about a concurrent program modeled as a transition system.
Recent efforts [55, 26, 53] have developed support for development of verified programs
atop the foundation of refinement over transition systems. Our work develops a foundation
and tool support for refinement over structured concurrent programs rather than flat
transition systems. We are encouraged by broad interest in the use of automatic program
simplification [112, 34] to reduce the complexity of reasoning about concurrent programs.

The technique of yield invariants is inspired by interference-free location invariants in
the work of Owicki and Gries [95] and the rely specification in rely-guarantee reasoning [63].
Yield invariants attempt to import the reuse of rely specifications to location invariants.
We introduce linear interfaces to encode permissions to address the practical concern of
unwieldy ghost state. While permissions have been used before for encoding ownership in
heap-manipulating programs [88], our encoding of permissions is different, applicable to
any shared resource, and targeted specifically at noninterference reasoning.

There are other efforts to build practical verifiers for concurrent programs. Some verifiers
focus on automation and target specific programming models and languages [78, 32, 62, 16].
Our verifier is just as automated but capable of targeting a variety of programming models
because of the foundation of atomic actions in RefPL. Other verifiers share our focus on
expressiveness by providing general and certified metatheory [64] but are less automated;
our verifier attempts to increase expressiveness without sacrificing automation. None of
these aforementioned verifiers focus on refinement and layered proofs.

Our work bears a superficial resemblance to proof methods [110, 19, 66] for lineariz-
ability [59]. Our work targets the general problem of safety verification. Linearizability is
a specific safety property to which our method is applicable.



36

3.2 Overview

In this section, we illustrate our contributions on a set of example programs. Section 3.2.1
presents yield invariants, Section 3.2.2 presents refinement, and Section 3.2.3 presents
linear interfaces.

3.2.1 Yield Invariants

Figure 3.1 shows a simple RefPL program. The first column shows a global counter
x, a procedure incr_x that increments x twice, and a yield invariant yield_x that
characterizes the interference from other threads while a thread is executing incr_x. The
increments of x on lines 4 and 6 are separated by a call to the yield invariant yield_x.
RefPL provides a single call statement for calling any number (including zero) of procedures
and yield invariants in parallel. The preserves specification on line 3 indicates that
yield_x is both a precondition (usually indicated by requires) and a postcondition
(usually indicated by ensures). In RefPL, each precondition of a procedure is a call to
a yield invariant; all preconditions are called in parallel at procedure entry. Similarly,
each postcondition is a call to a yield invariant; all postconditions are called in parallel at
procedure exit.

This paper focuses on reasoning about cooperative semantics in which preemptions
occur only at entry into a procedure, at a call during its execution, and at exit. The RefPL
verifier proves the correctness of yield_x and incr_x modularly on these cooperative
semantics. Specifically, the yield invariant yield_x is proved interference-free since the
only operations in the program that modify x increment it. The procedure incr_x is
proved by using the precondition of incr_x to establish the yield invariant at line 5
and then using the yield invariant to prove the postcondition at exit. This proof of
incr_x depends on the observation that the input parameter _x of incr_x is passed as
the argument to the three calls to yield_x: in the precondition, on line 5, and in the
postcondition. The second column shows code similar to what we just discussed, except
on global variable y, procedure incr_y, and yield invariant yield_y.

The third column show a procedure incr_x_y which uses recursion to create an
unbounded number of concurrent threads. incr_x_y nondeterministically spawns a copy
of itself on lines 20-21, calls procedures to increment x and y on lines 22-23, and asserts a
safety property about x and y on line 24. Our verification goal is to prove that if a single
instance of incr_x_y starts in a state that satisfies the initial constraints on x and y,
indicated on lines 1 and 9 respectively, then the assertion on line 24 holds in every copy of
incr_x_y.

The proof of procedure incr_x_y shows the modularity of yield invariants. First,
notice that no new yield invariants are needed; the entire proof of incr_x_y is achieved
by reusing yield_x and yield_y. Specifically, yield_x and yield_y are called in
parallel with each other at entry, yield_y is called in parallel with incr_x at line 22, and
yield_x is called in parallel with incr_y at line 23. Second, the arguments to yield_x
and yield_y are specialized to match the constraints in the initial state and the assertions.



37

1 var x: int // ≥ 0

2 procedure incr_x(_x: int)
3 preserves yield_x(_x)
4 x := x + 1
5 call yield_x(_x)
6 x := x + 1

7 invariant yield_x(_x: int)
8 _x ≤ x

9 var y: int // ≥ 0

10 procedure incr_y(_y: int)
11 preserves yield_y(_y)
12 y := y + 1
13 call yield_y(_y)
14 y := y + 1

15 invariant yield_y(_y: int)
16 _y ≤ y

17 procedure incr_x_y()
18 requires yield_x(0)
19 requires yield_y(0)
20 if (*)
21 async incr_x_y()
22 call incr_x(0) || yield_y(0)
23 call incr_y(0) || yield_x(0)
24 assert 0 ≤ x ∧ 0 ≤ y

Figure 3.1: Incrementing two separate counters to illustrate yield invariants.

3.2.2 Refining Atomic Actions

Figure 3.2 shows a spin lock implementation and a client that uses the spin lock to
atomically increment a shared counter. Procedure Acquire (lines 22–28) acquires the lock
and procedure Release (lines 29–34) releases the lock. Both procedures use a primitive
atomic action CAS (compare-and-swap) defined on lines 10–14 with two parameters—old_b
and new_b. This action compares the value of a global variable b to old_b. If they are
equal, b is set to new_b and true is returned, otherwise, b is not modified and false is
returned. Acquire attempts to set b from false to true repeatedly via recursive call to
itself (line 28) until it succeeds. Release sets b back to false from true.

Procedure Incr (lines 16–21) atomically increments the global variable count by
acquiring the lock, reading count into a local variable t by calling Read (lines 35–39),
writing t+1 back to count by calling Write (lines 40–43), and finally releasing the lock.
We prove that Incr implements an atomic increment via a sequence of two refinement
steps.

The first step abstracts the procedures Acquire, Release, Read, and Write into
atomic actions AcquireSpec, ReleaseSpec, ReadSpec, and WriteSpec, respectively.
These atomic actions, defined in the third column of Figure 3.2, provide an explicit specifi-
cation of the locking protocol for accessing the shared variable count. The specification of
these actions requires the introduction of (1) a local parameter tid containing the unique
id of the thread executing the code, and (2) a global variable l whose value is either None
when the lock is not held or Some(tid) when the lock is held by thread tid. The second
step uses these atomic actions to abstract Incr to an atomic action that increments count
by 1.

There are two challenges in the first refinement proof. First, the lock implementation
is defined using the concrete Boolean variable b, whereas the lock specification is defined
using the logical lock variable l. Second, the implementation of Acquire is recursive,
which is technically challenging for refinement reasoning. The solution to the first problem
is to introduce l and hide b during the refinement proof. To introduce l into the concrete
program, it is updated appropriately when Acquire (line 27) and Release (line 34)
complete successfully. Furthermore, the relationship between the variables b and l is
captured by the yield invariant LockInv (lines 7–8) which is used in the precondition and
postcondition of Acquire and Release. The solution to the second problem is a powerful
rule for refinement reasoning, described in Section 3.4, which allows the recursive call
to Acquire on line 28 to be replaced by a call to the specification AcquireSpec while
modularly proving that the body of Acquire refines AcquireSpec.



38

1 // Concrete global variables
2 var b: bool // false
3 var count: int

4 // Abstract global variable
5 var l: Option⟨Tid⟩ // None

6 // Supporting invariant
7 invariant LockInv()
8 b ⇐⇒ (l ̸= None)

9 // Primitive actions
10 action CAS(old_b, new_b: bool)
11 returns (success: bool)
12 success := b = old_b
13 if (success)
14 b := new_b

15 // Atomic increment
16 procedure Incr(linear tid: Tid)
17 preserves LockInv()
18 call Acquire(tid)
19 call t := Read(tid) || LockInv()
20 call Write(tid, t+1) || LockInv()
21 call Release(tid)

22 procedure Acquire(
23 linear tid: Tid)
24 refines AcquireSpec
25 preserves LockInv()
26 exec t := CAS(false, true)
27 if (t) l := Some(tid)
28 else call Acquire(tid)

29 procedure Release(
30 linear tid: Tid)
31 refines ReleaseSpec
32 preserves LockInv()
33 exec CAS(true, false)
34 l := None

35 procedure Read(
36 linear tid: Tid)
37 returns (v: int)
38 refines ReadSpec
39 v := count;

40 procedure Write(
41 linear tid: Tid, v: int)
42 refines WriteSpec
43 count := v;

44 action AcquireSpec(
45 linear tid: Tid)
46 assume l = None
47 l := Some(tid)

48 action ReleaseSpec(
49 linear tid: Tid)
50 assert l = Some(tid)
51 l := None

52 action ReadSpec(
53 linear tid: Tid)
54 returns (v: int)
55 assert l = Some(tid)
56 v := count

57 action WriteSpec(
58 linear tid: Tid, v: int)
59 assert l = Some(tid)
60 count := v

Figure 3.2: Spin lock to illustrate refinement of atomic actions.

procedure Incr(linear tid: Tid)
refines IncrSpec

exec AcquireSpec(tid)
exec t := ReadSpec(tid)
exec WriteSpec(tid, t+1)
exec ReleaseSpec(tid)

action IncrSpec()
count := count + 1

To set up the second refinement proof, the procedure
calls in the body of Incr are replaced by invocations of the
corresponding abstract atomic actions (as shown on the
right here). The rewritten body of Incr is preemption-free;
a yield may occur only at the beginning or the end. This
assumption is justified by a commutativity analysis based
on the observation that AcquireSpec is a right mover, ReleaseSpec is a left mover, and
ReadSpec and WriteSpec are both movers [47]. Proving these mover types requires that
the tid input parameters of two concurrent actions are distinct, which is specified by the
linear annotation. In addition to encoding distinctness of values, linear variables can
be used for encoding disjointness of permissions associated with values. We present an
example illustrating permissions in Section 3.2.3 and a detailed technical description in
Section 3.4.

For the prove that procedure Incr refines the action IncrSpec, which increments
count atomically, we do not need the invariant LockInv anymore; in fact we do not
need any invariant. Furthermore, the local parameter tid and the global variable l are
no longer needed in the program and can be hidden. Hiding local variables is a novel
feature of the refinement method described in this paper. The capability to introduce and
subsequently hide global and local variables allows us to chain a sequence of refinement
steps, localizing the use of variables to the parts of the proof that need them.

3.2.3 Linear Interfaces

Figure 3.3 shows a synchronization protocol extracted from a verified concurrent garbage
collector [56]. There are N mutator threads (procedure Mutator on line 31) numbered
from 1 to N, and one collector thread (procedure Collector on line 41) with ID 0. The
protocol ensures that no mutator accesses memory (line 40) concurrently while the collector
is doing a root scan (line 47) using barrier synchronization. Before the collector runs, it
sets the Boolean variable barrierOn to true (line 43) and waits until the integer variable



39

1 datatype Perm = Left(int) | Right(int)

2 function linear C1(i: int) : Set⟨Perm⟩ =
3 {Left(i), Right(i)}

4 function linear C2(ids: Set⟨int⟩) : Set⟨Perm⟩ =
5 {Left(i) | i ∈ ids}

6 function linear C3(p: Perm) : Set⟨Perm⟩ =
7 {p}

8 const N: int // positive
9 var barrierOn: bool // false

10 var barrierCounter: int // N
11 var linear mutatorsInBarrier: Set⟨int⟩ // ∅
12 // Primitive actions
13 action IsBarrierOn() returns (b: bool)
14 b := barrierOn

15 action EnterBarrier(linear_in i: int)
16 returns (linear_out p: Perm)
17 assert i ∈ [1..N]
18 mutatorsInBarrier := mutatorsInBarrier + {i}
19 barrierCounter := barrierCounter - 1
20 p := Right(i)

21 action WaitForBarrierRelease
22 (linear_in p: Perm, linear_out i: int)
23 assert p = Right(i) ∧ i ∈ mutatorsInBarrier
24 assume ¬barrierOn
25 mutatorsInBarrier := mutatorsInBarrier - {i}
26 barrierCounter := barrierCounter + 1

27 action SetBarrier(b: bool)
28 barrierOn := b

29 action WaitBarrier()
30 assume barrierCounter = 0

31 procedure Mutator(linear i: int)
32 requires i ∈ [1..N] preserves BarrierInv()
33 var b: bool, p: Perm
34 exec b := IsBarrierOn()
35 if (b)
36 call BarrierInv()
37 exec p := EnterBarrier(i)
38 call BarrierInv() || MutatorInv(p, i)
39 exec WaitForBarrierRelease(p, i)
40 // access memory here

41 procedure Collector(linear i: int)
42 requires i = 0 preserves BarrierInv()
43 exec SetBarrier(true)
44 call BarrierInv() || CollectorInv(i, false)
45 exec WaitBarrier()
46 call BarrierInv() || CollectorInv(i, true)
47 // do root scan here
48 assert mutatorsInBarrier = [1..N]
49 exec SetBarrier(false)

50 // Supporting invariants
51 invariant BarrierInv()
52 mutatorsInBarrier ⊆ [1..N] ∧
53 size(mutatorsInBarrier) + barrierCounter = N

54 invariant MutatorInv(linear p: Perm, i: int)
55 p = Right(i) ∧ i ∈ mutatorsInBarrier

56 invariant CollectorInv(linear i: int, done: bool)
57 i = 0 ∧ barrierOn ∧
58 (done =⇒ mutatorsInBarrier = [1..N])

Figure 3.3: Barrier synchronization to illustrate linear interfaces.

barrierCounter gets 0 (line 45). Before a mutator accesses memory, it reads barrierOn
(line 34). If false, the mutator goes ahead. Otherwise, it signals to the collector by
decrementing barrierCounter (line 37) and waits for barrierOn to be reset to false
(line 39).

This example declares both global and local linear variables (specified by linear,
linear_in, linear_out). Every linear variable—or more precisely, its current value—is
assigned a set of permissions of type Perm according to the collector functions C1, C2,
and C3. A linear integer i holds both Left(i) and Right(i), a set of integers holds the
corresponding Left permissions, and a Perm value holds itself. Note that Perm is not
special; any value can be a permission. For every program location we can compute the set
of available linear variables. For example, when a mutator enters the barrier (line 37), i
becomes unavailable because the permission Left(i) is transferred to the ghost variable
mutatorsInBarrier. Then i becomes available again after exiting the barrier (line 39).
Global linear variables (mutatorsInBarrier here) are always available. Parameterized
by the linear collectors, our linearity framework establishes the generic invariant that
all permissions across all available linear variables are disjoint. Now suppose that some
mutator i is at line 40, where it holds both of its permissions and in particular Left(i),
while the collector is at line 48, where mutatorsInBarrier holds all Left permissions
and in particular Left(i). This situation is impossible, since the linearity feature of
RefPL ensures that a duplication of permissions is impossible.

The strength of linearity, which leads to a less tedious verification task, is that its
invariant connects variables from different scopes, without the need to explicitly state



40

(and prove) this invariant. The programmer only provides a linearity specification which
is checked automatically (see Section 3.4). The resulting guarantees can then be assumed
“for free”. In contrast, even stating a corresponding invariant requires the introduction of
auxiliary global variables and helper invariants to connect them to local variables.

3.3 RefPL: Syntax and Semantics

In this section we present RefPL, a core programming language which is carefully designed
to be (1) a minimal yet general modeling language to express concurrent programs, (2) able
to express invariants over program executions, and (3) suitable for expressing (refinement-
based) program transformations. RefPL focuses on interfaces for modular verification,
while abstracting from detailed expression syntax and types.

Syntax. Figure 3.4 (top panel) summarizes the syntax of RefPL. We assume sets of
names which we use to name actions (A), procedures (P,Q), yield invariants (Y ), and
statement labels (λ). A set of variables is partitioned into global and local variables, and a
store σ is a partial map from variables to values. We write σ′ ⊆ σ if σ is an extension of σ′,
σ|V for the restriction of σ to V , σ[σ′] for the store that is like σ′ on dom(σ′) and otherwise
like σ, and g·ℓ for the combination of a global and local store. A program consists of a finite
set of global variables gs , a partial map as from action names to actions, and a partial map
ps from procedure names to procedures. Both actions and procedures have an interface of
input variables I and output variables O, and procedures have additional local variables L.
A (gated atomic) action [41, 71] consists of a gate ρ and a transition relation τ . The gate
is a set of stores (i.e., a predicate) over gs ∪ I. Executing the action in a state that does
not satisfy the gate fails the execution. Otherwise, every transition (σ, σ′,Ω) in τ describes
a possible atomic state transition from σ (over gs ∪ I) to σ′ (over gs ∪O), together with
the creation of new asynchronous threads according to a set of pending asyncs Ω; every
pending async (ℓ, P ) ∈ Ω is turned into a new thread that executes procedure P with input
store ℓ. A procedure consists of a statement s that is composed of standard control-flow
commands and two call commands: exec to invoke actions and call for the parallel
invocation of multiple procedures. Every entry in the invocation sequence of a call is
called an arm of the call, and the label λ is used to attach specification information to the
call. Parameter passing is expressed using an input map ι from the callee’s formals I to
the caller’s actuals I ∪O ∪L, and an injective output map o from the callee’s formals O to
the caller’s actuals O ∪L. Input variables are immutable, since they are not mapped to by
output maps and the variables of a procedure are not modified anywhere else. Output and
local variables of a procedure are initialized to the default value h. In RefPL, loops are
modeled using recursion, and conditional statements are modeled using nondeterministic
branching (∗) and actions that assume the branching condition.

Type checking. For a program we require that (1) the action name in an exec statement
is in dom(as), (2) the procedure names in a call statement are in dom(ps), and the actual
outputs of all arms are disjoint from each other and all actual inputs, and (3) for every
pending async (ℓ, P ) in the transition relation of an action in img(as), P ∈ dom(ps) and
dom(ℓ) contains all inputs of P .



41

A ∈ ActionName P,Q ∈ ProcName Y ∈ InvName λ ∈ Label

Val ∋ h
v ∈ Var = GVar ∪ LVar
g ∈ GStore = GVar ⇀ Val
ℓ ∈ LStore = LVar ⇀ Val
σ ∈ Store = Var ⇀ Val
ρ ∈ Gate = 2Store

τ ∈ Trans = 2Store×Store×PASet

Ω ∈ PASet = 2LStore×ProcName

ι, o ∈ IOMap = LVar ⇀ LVar

s ∈ Stmt ::= | skip | s ; s | s ∗ s
| callλ (P, ι, o) | exec (A, ι, o)

I, O, L ∈ 2LVar

Action ::= (I, O, ρ, τ)
Proc ::= (I, O, L, s)

gs ∈ 2GVar

as ∈ ActionName ⇀ Action
ps ∈ ProcName ⇀ Proc

P ∈ Prog ::= (gs , as , ps)

Inv ::= (I, ρ)
InvCall ::= (Y, ι)

ys ∈ InvName ⇀ Inv
pre, post ∈ ProcName ⇀ 2InvCall

inv ∈ Label ⇀ 2InvCall

Y ::= (ys , pre, post , inv)

lg ∈ 2GVar

li ∈ (ActionName ∪ ProcName ∪ InvName)
× {▷,◁}⇀ 2LVar

lo ∈ (ActionName ∪ ProcName)⇀ 2LVar

lc ∈ Val → 2Val

L ::= (lg , li , lo, lc)

ref ∈ ProcName ⇀ ActionName
mark ∈ Label ⇀ {□,■} ∪ N

R ::= (ref ,mark)

f ::= (P, ℓ, s)

t ::= Lf f | Nd f t
T ::= {t, . . . , t}
c ::= (g, T ) |  

SC ::= •s | SC ; s

TC ::= •t | Nd f tTC t
PC ::= {TC} ⊎ T
LC ::= PC [Lf (P, •ℓ, SC )]

for ps(Q) = (I, O, L, s) let

init(Q, ℓ) = (Q, ℓ|I ∪ [v ↦→ h]v∈O∪L, s)

(call) (g,PC [Lf (P, ℓ, SC [callλ (Qi, ιi, oi)])]) ⇒
(g,PC [Nd (P, ℓ, SC [callλ (Qi, ιi, oi)]) Lf init(Qi, ℓ ◦ ιi)])

(return) (g,PC [Nd (P, ℓ, SC [callλ (Qi, ιi, oi)]) Lf (Qi, ℓi, skip)]) ⇒
(g,PC [Lf (P, ℓ[ℓi ◦ o−1

i ], SC [skip])])

(exec) as(A) = ( , , ρ, τ) g̃ ⊆ g (g̃·(ℓ ◦ ι), ĝ·ℓ̂,Ω) ∈ ρ ◦ τ
g′ = g[ĝ] ℓ′ = ℓ[ℓ̂ ◦ o−1] T ′ = {Lf init(Q, ℓ′′) | (ℓ′′, Q) ∈ Ω}

(g,PC [Lf (P, ℓ, SC [exec (A, ι, o)])]) ⇒ (g′,PC [Lf (P, ℓ′, SC [skip])] ⊎ T ′)

(fail) as(A) = ( , , ρ, ) ¬∃g̃ ⊆ g : g̃·(ℓ ◦ ι) ∈ ρ

(g,LC [ℓ][exec (A, ι, o)]) ⇒  
(choice) s′ ∈ {s1, s2}
(g,LC [ℓ][s1 ∗ s2]) ⇒ (g,LC [ℓ][s′])

(skip) (g,LC [ℓ][skip ; s]) ⇒ (g,LC [ℓ][s]) (stop) (g, {Lf ( , skip)} ⊎ T ) ⇒ (g, T )

Figure 3.4: The programming language RefPL: syntax (top panel), proof annotations
(middle panel), and operational semantics (bottom panel).



42

Semantics. Figure 3.4 (bottom panel) presents the operational semantics of RefPL, a
transition relation ⇒ over configurations that consist of a global store over gs and a finite
multiset of threads. Each thread is a tree (which generalizes a call stack); a call statement
creates new leaf nodes (Lf) and blocks the caller in an internal node (Nd) until all arms of
the parallel call finish. Each tree node contains a frame (P, ℓ, s) that represents the current
state of a procedure P during execution: ℓ is the procedure’s current local store and s is a
statement that remains to be executed. In the definition of ⇒ we use several evaluation
contexts that have a unique hole •; filling the hole is denoted by ·[·]. In particular, SC [s]
is a statement with s in evaluation position, and PC [t] is a multiset of thread trees where
t is a subtree in one of these trees. The operator ◦ means function or relation composition.

Atomic actions (invoked through the exec command) execute directly in the context of
the caller; inline, if you will. If the current store does not satisfy the gate of an executed
action, the execution stops in the failure configuration  . It is important to appreciate
the generality of atomic actions. First, they can represent atomic operations at an
arbitrary level of granularity, from fine-grained low-level operations (e.g., as implemented
in hardware) to coarse-grained summaries (e.g., obtained as part of a layered proof).
Second, the notion of pending asyncs subsumes the need for a dedicated asynchronous
call statement, and enables advanced proof techniques for asynchronous programs [71, 68].
Finally, all accesses to global variables are confined to atomic actions.

We distinguish between the preemptive semantics and the cooperative semantics of a
program. The preemptive semantics ⇒ defines the standard fine-grained behaviors of a
concurrent program, where a context switch can happen at any time. A program should
be proved correct under its preemptive semantics. However, for reasoning purposes we
consider a cooperative semantics, where context switches only happen at procedure calls
and returns. We call these locations yields. The justification for reducing reasoning about
preemptive semantics to cooperative semantics is outside the scope of this paper (Civl
uses commutativity reasoning and a reduction argument).

A leaf node Lf (P, , s) is yielding, if it denotes the entry or exit of procedure P , i.e., if
ps(P ) = ( , , , s) or s = skip. A configuration is yielding if all leaves are yielding, and
cooperative if at most one leaf is not yielding. Then the cooperative semantics is given by
restricting ⇒ to cooperative configurations. Notice that the configuration after an exec

might be non-yielding. Thus, under cooperative semantics the pending asyncs created
by exec can only start executing once the caller reaches the next yield. We note that
arbitrary yields can be modeled with “empty” parallel calls (i.e., a call with no arms).

A yield-to-yield fragment {P |κ1} e {κ2} of a procedure P is any sequence of exec
statements e that forms a path in P from κ1 to κ2, where κ1 and κ2 are either call

statements, ⊥, or ⊤ (κ1 = ⊥ for procedure entries; κ2 = ⊤ for procedure exits). For
example, procedure Acquire in Figure 3.2 has three yield-to-yield fragments: (A1) en-
try/successful CAS/then branch/exit, (A2) entry/failed CAS/call in the else branch, and
(A3) call in the else branch/exit (i.e., an “empty” fragment). Let Gate(e) be the set of
stores from which executing e cannot fail, and let Trans(e) be the set of tuples (σ, σ′,Ω)
where executing e from store σ can result in σ′ with all created pending asyncs collected
in Ω. We define a reduced transition relation ⇛ over yielding configurations, such that
c⇛ c′ if and only if there are cooperative but non-yielding configurations (ci)1≤i≤n∧n≥0

with c ⇒ c1 ⇒ . . . ⇒ cn ⇒ c′. Thus, every step in ⇛ corresponds to the execution of a
yield-to-yield fragment under cooperative semantics.



43

3.4 Abstracting RefPL Programs

This section presents a proof rule for transforming a concurrent program P into a concurrent
program P ′ such that there is a simulation between the cooperative executions of P and
P ′. The transformation comprises variable hiding (P ′ has fewer global and local variables
than P) and procedure abstraction (procedures in P are summarized to atomic actions in
P ′). Our proof rule takes as input a yield specification Y , a linearity specification L, and
a refinement specification R (see Figure 3.4), and decomposes the refinement verification
problem as follows.

Linearity(P ,Y ,L) Safety(P ,Y ,L) Refinement(P ,Y ,L,R,P ′)

Y ,L,R ⊢ P ⇝ P ′

The yield specification declares yield invariants and attaches them to program locations,
and the linearity specification declares linear interfaces and sets up a permission discipline
(Section 3.4.1). The Linearity judgment (Section 3.4.2) ensures that the linear interfaces
of procedures, actions, and invariants in P are valid, which establishes a linear disjointness
property. The Safety judgment (Section 3.4.3) ensures that preconditions, postconditions,
and invariants in P are valid and interference-free, which captures reachability information
in P. Note that Linearity and Safety interact, as yield invariants can have a linear
interface and safety checking assumes the guarantees of linearity checking. In our proof
rule, the guarantees of Linearity (Lemma 1) and Safety (Lemma 2) establish the context
for refinement checking. However, we stress that these guarantees are useful on their
own, independent of refinement. The refinement specification (Section 3.4.4) declares how
P is converted to P ′, and the Refinement judgment ensures that every execution of P
is simulated by an execution of P ′ (Theorem 4). In Section 3.5 we show how all of our
obligations are implemented in practice.

3.4.1 Yield Invariants and Linear Interfaces

RefPL supports yield invariants of the form (I, ρ), where I are input variables and ρ is
a gate over gs ∪ I. In a yield specification Y = (ys , pre, post , inv), the map ys assigns
invariant names to yield invariants, such that invariants can be “invoked” by name—
similar to actions and procedures—by supplying an input map ι. We will write φ and
ψ for sets of such invariant calls, and σ |= φ to denote that store σ satisfies φ, i.e.,
g·ℓ |= φ ⇐⇒ ∀(Y, ι) ∈ φ ∃ĝ ⊆ g : ĝ·(ℓ ◦ ι) ∈ ys(Y ).ρ. Then invariant calls are assigned
to program locations as follows: pre(P ) are the preconditions that must hold on entry to
procedure P , post(P ) are the postconditions that must hold on exit from procedure P ,
and inv(λ) are the invariants that must hold at calls labeled with λ. These are the yield
locations in the cooperative semantics, under which we will show the invariants correct
and stable under interference.

RefPL supports linear permissions to enhance local reasoning. The core idea of linearity
is to identify a subset of (linear) available variables among all variables in all frames of a
configuration. Every value stored in an available variable is mapped to a set of values called
permissions, with the desired property that the values in available variables are mapped
to disjoint permissions. This disjointness property can then be used as free assumption in
other verification conditions.



44

In a linearity specification L = (lg , li , lo, lc), the linear global variables lg are a subset of
gs , which are always available. For every action/procedure/invariant name X, li(X,▷) and
li(X,◁) are subsets of its input variables called linear-in and linear-out, respectively. The
linear-ins expect to receive from an available actual parameter, while the linear-outs ensure
that their actual parameter will be available upon return. An input variable can be both
linear-in and linear-out (which we assume for all invariants). For every action/procedure
name X, its linear outputs lo(X) are a subset of its output variables, such that the receiving
actual return parameters become available when X returns. For example, in Figure 3.3
the global variable mutatorsInBarrier is linear, procedure Mutator and yield invariant
CollectorInv have a linear (linear-in and linear-out) input i, action EnterBarrier has
linear-in input i and linear output p, and WaitForBarrierRelease has a linear-in input
p and linear-out input i. The permissions assigned to an available variable are determined
by a linear collector function lc, which is a flexible mechanism to encode various permission
disciplines. For convenience, we lift lc to collect all permissions of a set of variables V
in store σ, i.e., lc(σ, V ) =

⨄
v∈V lc(σ(v)). A simple example of a collector function that

expresses unique identifiers (as needed in Figure 3.2) would return the singleton set {tid}
for a thread identifier variable tid. Figure 3.3 shows a more advanced usage, where the
definition of lc is split across the functions C1, C2, and C3 (see Section 3.2.3).

3.4.2 Linearity

Let us assign to every (sub)statement s in P a linear type in
out , written as s : in

out , where
in/out is the set of local variables available directly before/after executing s. Based on
the linear interfaces in li and lo, the most general linear types can be inferred, but for
simplicity we assume all types to be given and define a type checker below. Since linear types
annotate each program location with available variables, we can define the collection of
linear permissions over a configuration c = (g, T ) as lc(c) = lc(g, lg)⊎

(⨄
(P,ℓ,s:inout )

lc(ℓ, in)
)
,

where (P, ℓ, s : in
out) ranges over all frames in all nodes of T . Then the linear disjointness

property for a configuration c is IsSet(lc(c)), where IsSet(·) states that a multiset does not
contain duplicates. We call such a configuration L-valid. The Linearity(P ,Y ,L) judgment
comprises a semantic check on actions and a syntactic check on procedures, which ensures
the preservation of the linear disjointness property as follows.

Lemma 1. Let c be an L-valid configuration of P. If c⇒ c′ then c′ is L-valid.

Essentially, an execution starts with a set of permissions and redistributes these in
every step. The permissions can stay the same or decrease, but never increase.

Linear action checking. All state updates (other than parameter passing) are confined
to atomic actions. We need to ensure that the outgoing permissions of an action are always
a subset of the incoming permissions. Thus, for every A ∈ dom(as) with as(A) = ( , , ρ, τ )
we check

(g·ℓ, g′·ℓ′,Ω) ∈ ρ ◦ τ ∧ inPerm =
(
lc(g, lg) ⊎ lc(ℓ, li(A,▷))

)
∧ IsSet(inPerm) =⇒(

lc(g′, lg) ⊎ lc(ℓ, li(A,◁)) ⊎ lc(ℓ′, lo(A)) ⊎
(⨄

(ℓ′′,P )∈Ω lc(ℓ′′, li(P,▷))
))

⊆ inPerm.

Starting with a set of permissions in the linear globals and linear-in inputs, the action
can redistribute these permissions among the linear globals, its linear-out inputs and



45

out ⊆ in

skip : in
out

s1 :
in
out s2 :

out
out ′

s1 ; s2 :
in
out ′

s1 :
in
out1

s2 :
in
out2

s1 ∗ s2 : in
out1∩out2

ι(li(A,▷)) ⊆ in out ⊆
(
in \ ι(li(A,▷))

)
⊎ ι(li(A,◁)) ⊎ o(lo(A))

exec (A, ι, o) : in
out

(
⨄

i ιi(li(Pi,▷))) ⊎
(⨄

(Y,ι)∈inv(λ) ι(li(Y,▷))
)
⊆ in

out ⊆ (in \⨄i ιi(li(Pi,▷))) ⊎ (
⨄

i ιi(li(Pi,◁))) ⊎ (
⨄

i oi(lo(Pi)))

callλ (Pi, ιi, oi) :
in
out

Figure 3.5: Linear type checking.

linear outputs, and the linear-ins of pending asyncs, but permissions cannot appear out
of thin air. Notice that this check depends on the user-provided linear collector function
lc. For example, consider action EnterBarrier in Figure 3.3. The linear-in input i
holds the permissions Left(i) and Right(i) on entry (cf. collector C1). By adding i to
mutatorsInBarrier we hand over the permission Left(i) (cf. collector C2), and by the
assignment to the linear output p we hand over the permission Right(i) (cf. collector
C3). Thus, the set of permissions in mutatorsInBarrier and i before is the same as the
permissions in mutatorsInBarrier and p after executing EnterBarrier.

Linear type checking. Now that we can trust the linear interfaces of actions, we
need to ensure that the linear types in procedures “add up” w.r.t. control flow and
parameter passing. For every P ∈ dom(ps) with body s : in

out we require in = li(P,▷),
out = li(P,◁) ∪ lo(P ), and a derivation of s : in

out according to the rules in Figure 3.5,
where ι(V ) means

⨄
v∈V ι(v). For example, in procedure Mutator in Figure 3.3 the linear

input parameter i becomes unavailable at line 37, where it is passed as linear-in. However,
this call makes the local variable p available, such that it can be passed as linear-in to the
call on line 39. This call also passes i as linear-out input, which makes i available again
on line 40.

3.4.3 Safety

In a yielding configuration (g, T ), every frame (P, ℓ, s) in T is associated with a set of
invariant calls φ as follows: φ = pre(P ) if s is the entry of P , φ = post(P ) if s is skip (the
exit of P ), or φ = inv(λ) if s is blocked at a call labeled with λ. If g·ℓ |= φ holds in every
frame, then we call the configuration Y-valid. To show that this property is preserved
across the execution of a yield-to-yield fragment (i.e, a step in ⇛), the Safety(P ,Y ,L)
judgment is decomposed into two kinds of procedure-modular verification conditions: (1) a
sequential check which ensures that the next φ in the executing frame is established, and
(2) a noninterference check which ensures that the φ’s in all other frames are preserved.
Both checks weave in linearity to enhance local reasoning.

Lemma 2. Let c be an L-valid, Y-valid configuration of P. If c⇛ c′ then c′ is Y-valid.



46

Floyd packages. For convenience, let pre(κ) be the set of all invariants and preconditions
of a call statement κ (and post(κ) analogously):

pre(callλ (Qi, ιi, oi)) = inv(λ) ∪
(⋃

i{(Y, ιi ◦ ι) | (Y, ι) ∈ pre(Qi)}
)

post(callλ (Qi, ιi, oi)) = inv(λ) ∪
(⋃

i{(Y, (ιi ∪ oi) ◦ ι) | (Y, ι) ∈ post(Qi)}
)

For every yield-to-yield fragment {P |κ1} e {κ2} of P ∈ dom(ps) we define a Floyd package
{P |φ | ll} e {ψ}, which contains the invariants φ and linear available variables ll before,
and the invariants ψ after the yield-to-yield fragment:

(φ, ll) =

{
(pre(P ) , li(P,▷)) if κ1 = ⊥
(post(κ1) , out(κ1)) if κ1 ̸= ⊥ ; ψ =

{
post(P ) if κ2 = ⊤
pre(κ2) if κ2 ̸= ⊤ .

Sequential checking. For every Floyd package {P |φ | ll} e {ψ} we check⎛⎝ ① g·ℓ |= φ
② (g·ℓ, g′·ℓ′,Ω) ∈ Trans(e)
③ IsSet(lc(g·ℓ, lg ∪ ll))

⎞⎠ =⇒
(

④ g′·ℓ′ |= ψ
⑤ ∀(ℓ′′, P ) ∈ Ω : g′·ℓ′′ |= pre(P )

)
.

After ② executing e from a store with ③ disjoint permissions that ① satisfies φ, it must
be the case that ④ ψ and ⑤ the preconditions of all created pending asyncs hold. Notice
that we can assume all gates of atomic actions when executing e. This is the case because
yield invariants are not supposed to be strong enough to prove P safe. Their purpose is to
establish the context for refinement checking.

Noninterference checking. For every Floyd package {P |φ | ll} e {ψ} and every yield
invariant Y ∈ dom(ys) we check⎛⎝ ① g·ℓ |= φ ∧ g·ℓ′ |= Y

② (g·ℓ, g′· , ) ∈ Trans(e)
③ IsSet(lc(g·ℓ, lg ∪ ll) ⊎ lc(ℓ′, li(Y,▷)))

⎞⎠ =⇒ ④ g′·ℓ′ |= Y.

After ② executing e from a store with ③ disjoint permissions that ① satisfies both φ and Y ,
it must be the case that ④ Y still holds. A key ingredient that makes our yield invariants
powerful is the possibility to pass parameters to them (ℓ′ above, which is the same before
and after executing e), together with the possibility to give invariants a linear interface
to include them in the disjointness assumption ③. The reuse of named, parameterized
invariants that are inductive on their own facilitates ergonomic and modular proofs as well
as a reduction in the number of noninterference checks compared to location invariants.

The example in Figure 3.3 uses three yield invariants. BarrierInv states a global
property on barrierCounter and mutatorsInBarrier, MutatorInv states a property
of mutators on line 38, and CollectorInv states a property of the collector at lines 44
and 46 (notice the difference in the Boolean parameter). The linear parameters to both
MutatorInv and CollectorInv are essential to prove their noninterference. For example,
linearity discharges all noninterference obligations of CollectorInv w.r.t. yield-to-yield
fragments in procedure Collector; there cannot be two different available variables i
both holding thread identifier 0. CollectorInv is also stable across the yield-to-yield
fragments in procedure Mutator: by linearity, we know that EnterBarrier cannot execute
if mutatorsInBarrier holds all mutator identifiers, and WaitForBarrierRelease is



47

blocked when barrierOn is true. As an example of a sequential check, observe that the
invariants at line 44 together with barrierCounter = 0 from executing WaitBarrier
imply the invariants at line 46, in particular that mutatorsInBarrier holds all mutator
identifiers.

3.4.4 Refinement

Recall that the goal of our proof rule is to transform a program P = (gs , as , ps) into a
program P ′ = (gs ′, as ′, ps ′). So far, we showed how the two judgments Linearity(P ,Y ,L)
and Safety(P ,Y ,L) establish properties on executions of P, using a linearity specifica-
tion L and yield specification Y. In the remainder of this section we show how the
Refinement(P ,Y ,L,R,P ′) judgment ties together P and P ′ using a refinement specifica-
tion R.

Consider an execution step c⇛ c′ of P . We want to say that there is a representative
step ĉ ⇛ ĉ′ in P ′. Representative means that ĉ and ĉ′ are abstract representations of c
and c′, respectively. We capture this notion in an abstraction mapping α, which maps
every concrete configuration of P to an abstract configuration of P ′. Then the meaning of
the judgment L,Y ,R ⊢ P ⇝ P ′ derived by our proof rule is expressed in the following
theorem.

Theorem 4. Let c be an L-valid, Y-valid configuration of P. (1) If c⇛  then α(c)⇛  .
(2) If c⇛ c′ then either α(c) = α(c′), α(c)⇛ α(c′), or α(c)⇛  .

The safety of P ′ should imply the safety of P. Thus, (1) states that any failure in P
is preserved in P ′. And (2) states that every step in P is matched with a (potentially
stuttering) step or failure in P ′. Hence, P ′ can fail “more often” than P, but otherwise
“behaves like” P .

Refinement specification. In a refinement specification R = (ref ,mark), the refine-
ment mapping ref is a partial map from dom(ps) to dom(as ′). For every procedure
P ∈ dom(ref ), we check that P is abstracted by action A = ref (P ). Since our refinement
checks are procedure-modular, we require dom(ref ) to be closed under calls in ps (not
including pending asyncs). In general, P executes multiple yield-to-yield fragments and
possibly calls other procedures, while A executes in a single atomic step. Thus we need
to ensure that exactly one yield-to-yield fragment in P behaves like A, while all other
fragments have no visible side effect. We use a marking function mark to identify where A
should happen in P . For every call statement with label λ, mark(λ) is either □ (“before”),
■ (“after”), or the index i ∈ N of some arm of the call. This means that we are still before
A when the call returns, that we are already after A when reaching the call, or that arm i
establishes A, respectively. Naturally, procedure entry and exit are marked with □ and ■,
respectively. Then the marks along every path of P must match the regular expression
□+N?■+, which distinguishes two cases. (M1) No call is marked with an index i ∈ N.
Then some yield-to-yield fragment switches from □ to ■, which we will check to behave
like A. All other yield-to-yield fragments and calls on the path must have no side effect.
(M2) Some call is marked with index i ∈ N. We will check that arm i of this call behaves
like A, while all other calls and yield-to-yield fragments on the path must have no side
effect. Since we check mark per path, there are in general multiple occurrences of (M1)
and (M2).



48

In Figure 3.2, the ref mapping is specified using the refines keyword. For example,
procedure Acquire refines the atomic action AcquireSpec. The mark mapping is not
explicitly specified, but we consider the call on line 28 to be marked with 1 (the index of
its only arm). Then one path through Acquire is marked with □■ and the other one
with □ 1■, both matching the regular expression above.

Program rewriting. The program P = (gs , as , ps) is rewritten into P ′ = (gs ′, as ′, ps ′)
as follows. First, global variables can be hidden, such that gs ′ ⊆ gs . Second, new atomic
actions can be added (for new abstractions of procedures) and unreferenced ones removed,
but for A ∈ dom(as) ∩ dom(as ′) we require as ′(A) = as(A). Recall that an action can
execute in any program that contains the referenced global variables and procedures. Third,
dom(ps ′) = dom(ps) and we rewrite every ps(P ) = (I, O, L, s) into ps ′(P ) = (I ′, O′, L′, s′)
as follows. Local variables can be hidden, such that I ′ ⊆ I ∧ O′ ⊆ O′ ∧ L′ ⊆ L. If
P ̸∈ dom(ref ), then s′ is like s, except that call arms (Q, ι, o) with ps ′(Q) = (IQ, OQ, , )
turn into (Q, ι|IQ , o|OQ

), with the requirement img(o) ∩ (O′ ∪ L′) = img(o|OQ
) that formal

and actual outputs can only be hidden together. We denote this rewriting of a statement by
α(s). If P ∈ dom(ref ), then s′ = exec (ref (P ), id(I ′), id(O′)), where id(·) is the identity
mapping on a given set of variables. We denote this exec statement by α(P ). Thus,
procedures in dom(ref ) remain in P ′, but with their bodies rewritten to a single exec to
their abstraction. Clearly, the action interface as ′ ◦ ref (P ) = (I ′, O′, , ) must match the
procedure, and L′ = ∅. Overall, P ′ must still typecheck, which ensures, e.g., that the
remaining actuals in input/output maps were not hidden.

In the first refinement step of Section 3.2.2, where the procedures in the second column
of Figure 3.2 are abstracted to the atomic actions in the third column, the global variable
b is hidden. In the second refinement step, where procedure Incr is abstracted to action
IncrSpec, the input parameter tid and the global variable l are hidden. Notice that, in
order to chain together these two refinement steps, we performed an auxiliary rewriting step
in procedure Incr that converted call statements to exec statements. Civl automatically
performs this transformation as part of a refinement step, justified by a commutativity
argument we explained in Section 3.2.2. However, this rewriting is not formalized as part
of our refinement rule in this paper.

Skip action. In the following we assume a special action Skip that has no inputs and
outputs, does not modify global variables, and creates no pending asyncs. Formally,
as(Skip) = (∅,∅, {ε}, {(ε, ε,∅)}), where ε is the empty store. Observe that safety
verification (i.e., showing that the failure configuration  is unreachable) is a special case
of refinement, where all global and local variables are hidden, and all procedures are
abstracted to Skip.

Abstraction mapping. Figure 3.6 defines the abstraction mapping α. In a given
yielding configuration, we restrict the global store to gs ′ and drop all trees rooted

¶

·

¸

in a node that refines Skip. The remaining nodes are traversed re-
cursively, where frames with P ̸∈ dom(ref ) (nodes • on the right)
are rewritten as expected. The interesting case is for nodes with
P ∈ dom(ref ), like node ❶ on the right. In this case, ❶ is turned into
a leave (cutting off the remaining subtree) whose statement is either
α(P ) (the single exec of ref (P )) or skip. Intuitively, to match the



49

Abstraction of configuration

α((g, T )) = (g|gs′ , {α(t) | t ∈ T ∧ root(t) = P ∧ ref (P ) ̸= Skip})

Abstraction of thread tree

For the definitions of α(s) and α(P ), see program rewriting.

ℓ|P = ℓ|I∪O∪L if ps ′(P ) = (I, O, L, )

α(Lf (P, ℓ, s)) = Lf (P, ℓ|P , α(s)) if P ̸∈ dom(ref )

α(Nd (P, ℓ, s) t) = Nd (P, ℓ|P , α(s)) α(t) if P ̸∈ dom(ref )

α(Lf (P, ℓ, s)) = Lf (P, ℓ|P , s′) s′ =

{
α(P ) if s ̸= skip

skip if s = skip
if P ∈ dom(ref )

α(Nd (P, ℓ, )  
t

) = Lf (P, ℓ′|P , s′) s′, ℓ′ =

{
α(P ), ℓ if r(t) = □
skip , r(t) if r(t) ̸= □ if P ∈ dom(ref )

Early-return computation

r(Lf (P, ℓ, s)) =

{
□ if s ̸= skip

ℓ if s = skip

r(Nd (P, ℓ, SC [callλ (Q, ι, o)]) t) =

⎧⎪⎪⎨⎪⎪⎩
□ if mark(λ) = □
ℓ if mark(λ) = ■
□ if mark(λ) = i ∧ r(ti) = □
ℓ[r(ti) ◦ o−1

i ] if mark(λ) = i ∧ r(ti) ̸= □

Figure 3.6: Abstraction mapping from configurations of P to configurations of P ′.

concrete steps of P (in ❶ and its subnodes), the abstract configuration first stutters at
α(P ), then transitions to skip when the effect of ref (P ) happens, and then stutters at
skip until the return from ❶. The delicate part is to determine if ref (P ) happened and
to compute the local store for the abstract configuration. This is done by the early-return
function r. The function recurses on the unique path of marked arms in calls, ❶ ❷ ❸ in
our example, and either returns □ (when “before ref (P )”) or a local store ℓ (when “after
ref (P )”). Suppose that ❶,❷,❸ have local stores ℓ1, ℓ2, ℓ3, and that r(❸) = ℓ3. Then r(❷)
equals ℓ2 updated with the return parameters from ℓ3, say ℓ

′
2, and similarly r(❶) equals

ℓ1 updated with the return parameters from ℓ′2, say ℓ
′
1, which is the local store for the

abstract configuration. Thus, r performs “early” return parameter passing, even though
we are still in the middle of executing procedures. To prove Theorem 4, our verification
conditions below have to ensure that throughout subsequent concrete execution steps,
r(❶) remains ℓ′1.

Refinement packages. In a procedure P ∈ dom(ref ), the effect of the abstract action
ref (P ) can happen either in a yield-to-yield fragment directly in P , or nested inside another
called procedure. To handle (potentially recursive) procedure calls during refinement, we
decompose the problem into procedure-modular checks. Recall that the marking function
mark identifies yield-to-yield fragments and call arms in P that should behave like the
abstract action ref (P ). Conversely, all other yield-to-yield fragments and call arms should
have no side effect, which is to say that they should behave like Skip. Hence we have a
refinement obligation for every yield-to-yield fragment and every call arm in P , where



50

refinement is either checked against ref (P ) or Skip. We capture all these refinement
obligations uniformly in refinement packages of the form {P |φ | ll} e {A}, where P is the
procedure we check refinement for, φ is a set of invariant calls and ll a set of available
variables we can assume, e is an exec sequence denoting the effect we check refinement
for, and A is the action we check refinement against.

(R1) Refinement packages for yield-to-yield fragments. For every procedure P ∈ dom(ref )
and yield-to-yield fragment {P |κ1} e {κ2} of P we define the refinement package
{P |φ | ll} e {A} where φ and ll are defined the same as for Floyd packages, and A = ref (P )
if mark(κ1) = □ and mark(κ2) = ■, or A = Skip otherwise. This case is rather straight-
forward. We proved the validity of φ and ll before the fragment, and need to check that
the code e in the fragment behaves either like ref (P ) or skip.

(R2) Refinement packages for call arms. For every procedure P ∈ dom(ref ) and
callλ (Qi, ιi, oi) :

in
out in P , let φ = inv(λ) and ll = in \ ⋃

i ιi(li(Qi,▷)). At a call we
know the validity of the invariants attached to the call and the availability of in minus the
linear variables passed into the callees. Then for every arm (Qi, ιi, oi), let Ai = ref (P ) if
mark(λ) = i or Ai = Skip otherwise. Now the final missing ingredient for a refinement pack-
age {P |φ | ll} e {Ai} for every arm i is the effect e for which we check refinement against
Ai. To obtain a modular check, our solution is to use the abstract action specification of
the callee Qi. Formally, e = exec (Bi, ιi|I , oi|O) for Bi = ref (Qi) with as ′(Bi) = (I, O, , ).
Recall that this is well-defined, since dom(ref ) is closed under calls. Notice that using the
specification of a callee while checking the specification of a caller is akin to reasoning with
procedure pre- and postconditions, where circular dependencies are resolved via induction
on the nesting depth.

Recall (from the end of Section 3.3) that procedure Acquire in Figure 3.2 has three
yield-to-yield fragments: (A1), (A2), (A3). Each fragment induces an (R1)-type refine-
ment package, where (A1) is checked against AcquireSpec, while both (A2) and (A3)
are checked against Skip. Furthermore, the call on line 28 induces an (R2)-type refinement
package against AcquireSpec.

Refinement checking. The Refinement(P ,Y ,L,R,P ′) judgment requires every refine-
ment package {P |φ | ll} e {A} to be discharged as follows. Let e = exec (A, id(I), id(O))
for as ′(A) = (I, O, , ) be the abstract effect we check refinement against, let V =
gs ′ ∪ I ′ ∪O′ for as ′ ◦ ref (P ) = (I ′, O′, , ) be the non-hidden variables in the scope of the
refinement package, and check

(
① g·ℓ |= φ
② IsSet(lc(g·ℓ, lg ∪ ll))

)
=⇒

⎛⎜⎜⎝
③ g·ℓ ∈ Gate(e) =⇒ g·ℓ ∈ Gate(e)
④ (g·ℓ, g′·ℓ′,Ω) ∈ Gate(e) ◦ Trans(e) =⇒

∃g·ℓ̂, ĝ′·ℓ̂′ : (ĝ·ℓ̂, ĝ′·ℓ̂′,Ω|ref ) ∈ Trans(e)

∧ g·ℓ|V = ĝ·ℓ̂|V ∧ g′·ℓ′|V = ĝ′·ℓ̂′|V

⎞⎟⎟⎠
where Ω|ref = {(ℓ,Q) ∈ Ω | ref (Q) ̸= Skip}.

We assume a store g·ℓ that satisfies ① invariants and ② linear disjointness according to
the refinement package. Then refinement consists of two parts, failure preservation and
behavior preservation. First, ③ if e can fail in the concrete then e must also fail in the
abstract. Second, ④ if e cannot fail in the abstract and e can transition to store g′·ℓ′ while
creating pending asyncs Ω in the concrete, then there must be a matching transition of e
in the abstract. Here matching means that e starts in a store ĝ·ℓ̂ that agrees with g·ℓ on



51

the non-hidden variables V , ends in a store ĝ′·ℓ̂′ that agrees with g′·ℓ′ on V , and creates
the same pending asyncs except the ones to procedures abstracted to Skip.

3.5 Implementation

Civl is a refinement-based verifier for concurrent programs built on top of the widely-used
Boogie intermediate verification language. The Boogie [14] verifier provides infrastructure
for compiling annotated sequential procedures into logical verification conditions whose
validity is checked by a satisfiability-modulo-theories solver. Civl is implemented as an
extension of Boogie, which takes as input an annotated layered concurrent program [70]
(in a language whose core is RefPL), performs concurrency-specific type checking and
static analyses, and then encodes all the verification conditions of its proof rule into
a standard sequential Boogie program. Thus, Civl can be understood as a compiler
that eliminates concurrency in a RefPL program by translating it down to a collection of
sequential procedures, thus reusing the rest of the Boogie pipeline unchanged.

The open-source Civl verifier is a stable tool which is part of the master branch [2] and
public release [1] of Boogie. Civl has over 100 regression tests comprising both realistic
programs and microbenchmarks. There are many published papers [71, 115, 23, 91, 73]
that describe nontrivial examples verified using Civl, most written by researchers other
than the developers of Civl. The code in Civl is extensible; entirely new tactics for
rewriting concurrent programs have been added to it [71, 68]. Finally, Civl is designed
for interactive program development. It is fast and provides several command-line flags to
focus verification on parts of the program. Civl has fine-grained error reporting including
error traces, which attributes a verification failure to a particular check, local to a small
part of the program. This helps the programmer to debug and iteratively improve both
implementation and specification.

An early version of the Civl verifier was reported by Hawblitzel et al. [56]. The
implementation of the techniques described in this paper has been done as part of the
new design and implementation of Civl based on the framework of layered concurrent
programs [70]. In the rest of this section, we will continue to use Civl to refer to our new
implementation. We now present an overview of the different parts of the verifier.

Type checking. In addition to the standard type checking of a Boogie program, theCivl
type checker performs several extra checks. First, it checks that the layer specifications [70]
on program elements such as global and local variables, atomic actions, and procedures
are correct. Second, it checks using a dataflow analysis that it is sufficient to reason about
the safety of cooperative semantics. This analysis exploits mover type [47] annotations
on atomic actions to reason that yield-to-yield code fragments satisfy the requirements
of Lipton reduction [80]. It also generates logical verification conditions whose validity
guarantee the correctness of the mover annotations on atomic actions.

Linearity checking. The Civl linearity checker implements the method described in
Section 3.4.2 in two parts. First, it creates for each atomic action a sequential procedure
which verifies that the multiset of outgoing permissions is a subset of the multiset of
incoming permissions. We use the generalized array theory [36] to encode multisets, and
the IsSet constraint in particular. Second, it type checks each procedure to compute the



52

set of available variables at each control location and to verify that linear interfaces of
called procedures and atomic actions are used appropriately.

Safety checking. The Civl safety checker implements the method described in Sec-
tion 3.4.3. Unlike the formal description which enumerates yield-to-yield code fragments,
the implementation is efficient, encodes all code fragments in a RefPL procedure into a
single sequential procedure with maximal sharing, and adds the safety checks by injecting
instrumentation code and assertions into a cloned copy of the original procedure. To
express the noninterference check, we add instrumentation variables that take snapshots
of global and output variables at every yield. Furthermore, the generalized array theory is
used here as well to record the pending asyncs created in a yield-to-yield code fragment,
such that their preconditions can be checked.

Refinement checking. The Civl refinement checker implements the method described
in Section 3.4.4. Similar to safety checking, the refinement checks are added as instrumenta-
tion to procedure copies. At every yield, snapshot variables (similar as for noninterference)
are used to refer to the state at the previous yield when asserting the appropriate transition
relation. Civl computes a representation of the transition relation of an atomic actions as
a logical formula from the user-provided representation as imperative code.

3.6 Conclusions

In this paper, we provide a foundation for refining structured concurrent programs and an
implementation in the Civl verifier. The contribution of this paper, and that of Civl
in general, is the capability to express new proofs with significant advantages for the
programmer in terms of proof structuring, annotation effort, and tool performance.

Acknowledgments

Bernhard Kragl and Thomas A. Henzinger were supported by the Austrian Science Fund
(FWF) under grant Z211-N23 (Wittgenstein Award).



53

4 Synchronizing the Asynchronous

Abstract. Synchronous programs are easy to specify because the side effects
of an operation are finished by the time the invocation of the operation returns
to the caller. Asynchronous programs, on the other hand, are difficult to specify
because there are side effects due to pending computation scheduled as a result
of the invocation of an operation. They are also difficult to verify because of
the large number of possible interleavings of concurrent computation threads.
We present synchronization, a new proof rule that simplifies the verification
of asynchronous programs by introducing the fiction, for proof purposes, that
asynchronous operations complete synchronously. Synchronization summarizes
an asynchronous computation as immediate atomic effect. Modular verifica-
tion is enabled via pending asynchronous calls in atomic summaries, and a
complementary proof rule that eliminates pending asynchronous calls when
components and their specifications are composed. We evaluate synchroniza-
tion in the context of a multi-layer refinement verification methodology on a
collection of benchmark programs.

4.1 Introduction

This paper focuses on the deductive verification of asynchronous concurrent programs,
an important class that includes distributed fault-tolerant protocols, message-passing
programs, client-server applications, event-driven mobile applications, workflows, device
drivers, and many embedded and cyber-physical systems. A key aspect of such programs
is that (long-running) operations complete asynchronously. A process that invokes an
operation does not block for the operation to finish. Instead, the result from the completion
of the operation is communicated later, e.g., via a callback message. Asynchronous comple-
tion not only introduces concurrency and nondeterminism into the program semantics, but
also makes the task of specifying the correct behavior of operations difficult. The behavior
of a synchronous operation can be specified with a precondition and a postcondition
because there is no ambiguity about the state just before and just after the operation
executes. The behavior of an asynchronous operation is harder to specify because multiple
operations can be in flight at the same time and partial results from other operations may
have already affected the state before the operation finishes.

In this paper, we propose that reasoning about asynchronous computation can be
simplified via synchronization, a program transformation that generalizes reduction [80, 47].
While reduction allows the creation of a coarse-grained atomic action from a sequence



54

of fine-grained atomic actions performed by a single thread, synchronization allows the
creation of a coarse-grained atomic action from an asynchronous computation executed by a
potentially unbounded number of concurrent threads. Synchronization reduces the number
of interleavings; it allows us to pretend, for the purposes of proof, that asynchronous calls
complete synchronously and atomically, which leads to significantly simpler invariants.

Synchronization, similar to reduction, relies on commutativity properties of low-level
atomic actions. Establishing commutativity may be difficult if these atomic actions
access shared state that is also accessed by other, interfering concurrent computations.
To enable synchronization in the presence of interference, we leverage the observation
that commutativity properties among a set of atomic actions can be established by
abstracting these actions [41]. In particular, we incorporate synchronization as a program
transformation in the verification methodology of program layers [70], which allows the
programmer to chain together a sequence of increasingly abstract concurrent programs
containing atomic actions that are increasingly coarse-grained. Since program layers
allow history variables to be introduced, history variables are sufficient for converting an
arbitrary safety property into assertions, and the synchronization transformation preserves
all assertion failures, our technique is applicable to the proof of arbitrary safety properties
of asynchronous programs.

Synchronization, if used naively, leads to summaries that are not modular and hence
not reusable. Consider a scenario where a client invokes an operation S of a service, upon
whose completion a callback function C is invoked asynchronously. If the code of C is
synchronized into S, the summary of S will be cluttered by the effects of C, making reuse
across a different client impossible. To solve this problem, we generalize atomic summaries
to support pending asynchronous calls (pending asyncs in short). Using pending asyncs,
we can synchronize asynchrony internal to the service, while leaving the asynchronous
callback to C as pending in the summary of S, thus enabling the reuse across different
clients. Once the summary of S has been absorbed into the client, we need a mechanism
to replace the pending async with the effect of the concrete implementation of C. For that
we provide a second proof rule to eliminate pending asyncs from specifications.

We integrated our proof rules in the Civl verifier [56] which provided a baseline
framework of program layers. We report on our experience verifying a collection of
benchmark programs, showing that our technique enables elegant specifications and proofs
of asynchronous programs.

4.2 Overview

We start with an overview of our new verification technique based on the two concepts
synchronization and pending asyncs. In our examples we follow the convention of writing
procedure names capitalized (e.g., Acquire), and atomic action names in all caps (e.g.,
ACQUIRE). We use the notation [...] to denote unnamed atomic actions, i.e., the
statements inside square brackets are considered to execute indivisibly.

4.2.1 Asynchronous Increments and Decrements

Consider the program in Figure 4.1 (a). The program comprises a single procedure Main
that uses a global variable x and a local variable i. Every iteration of the while loop in



55

(a)
global var x

proc Main(n):
i := 0
while i < n:

async [x := x + 1]
async [x := x - 1]
i := i + 1

(b)

proc Main:
async Foo
assert false

proc Foo:
call Foo

(c)
global var x

proc Main(n):
i := 0
while i < n:

async [x := x + 1]
async [x := x - 1]
if *: i := i + 1

Figure 4.1: Asynchronous increments and decrements

Main creates two new threads, one executing an atomic increment [x := x + 1], and one
executing an atomic decrement [x := x - 1]. Due to asynchronous thread creation, the
execution of individual increments and decrements can be interleaved arbitrarily. However,
once all threads finish, the value in variable x is equal to its initial value. Thus, Main
refines the atomic action [skip], which does nothing.

A standard noninterference-based proof of this program requires an invariant that
states that “x is equal to its original value, plus the number of finished increment threads,
minus the number of finished decrement threads”. Stating this invariant requires ghost
code that tracks the progress of each thread. In contrast, our synchronization proof rule
(Section 4.4) allows us to consider both asynchronous calls in Main as regular synchronous
calls. Then sequential reasoning suffices to prove that the procedure leaves the variable x
unchanged. Synchronization is justified by the commutativity of atomic actions on shared
state. Specifically, both increment and decrement are left movers in the context of our
program. Thus the asynchronous computation steps in an interleaved execution can be
rearranged to obtain a corresponding synchronous execution that preserves final states.

However, commutativity alone is not sufficient! We also need to ensure that synchro-
nization preserves failing behaviors. Consider the program in Figure 4.1 (b) where Main
asynchronously calls a procedure Foo (which calls itself recursively) followed by a failing
assertion. The program has failing executions; the assertion can be scheduled any time
between steps of Foo. If we synchronize the call to Foo, however, the nontermination of
Foo makes the assertion unreachable and thus synchronization must not be allowed. We
could require termination of the synchronized program, but this would be unnecessarily
restrictive. We propose a weaker condition called cooperation, which only requires the
possibility to terminate. In other words, it must be impossible for the synchronized
program to reach a state where nontermination is inevitable. To illustrate cooperation,
consider Figure 4.1 (c), a modification of (a) which nondeterministically increments the
loop counter i. The program does not terminate because it may loop forever, but it
cooperates because it can always increment i. By synchronization we can show analogously
to (a) that (c) also refines [skip].

4.2.2 Lock Service

Figure 4.2 (a) shows a simple lock service implementation. A client requests the lock by
asynchronously invoking Acquire, which is implemented as spinlock using the atomic
compare-and-swap (CAS) operation on the global variable l. Once successful, the client of
the lock service is notified via an asynchronous callback. Summarizing Acquire as atomic
action via synchronization of the callback is not desirable, because it would drag in the
effect of the client into the specification of Acquire. Instead, we propose the modular,
reusable, and client-independent atomic action specifications ACQUIRE and RELEASE shown



56

(a)
global var l

proc Acquire (tid):
b := false
while !b:

call b := CAS(l, nil, tid)
async Callback(tid)

proc Release (tid):
call [l := nil]

(b)
global var l

action ACQUIRE (tid):
assert tid != nil
assume l == nil
l := tid
async Callback(tid)

action RELEASE (tid):
assert tid != nil && l == tid
l := nil

(c)
global var x

proc Callback(tid):
call [t := x]
call [x := t + 1]
async Release(tid)

(d)
global var x, l

action CALLBACK(tid):
assert tid != nil
assert l == tid
x := x + 1
l := nil

(e)
global var x, l

action ACQUIRE’ (tid):
assert tid != nil
assume l == nil
l := tid
x := x + 1
l := nil

(f)
global var x

action ACQUIRE’’ (tid):
x := x + 1

Figure 4.2: Lock service

in (b). Notice how we represent guarded atomic transitions as program code. But more
importantly, observe that the atomic action specification ACQUIRE contains a pending async
to Callback. That is, we allow the effect of asynchronous thread creation as part of atomic
actions. Now, to make use of such specifications, our technique is complemented with a
proof rule to eliminate pending asyncs (Section 4.6), once an atomic action specification
for the target is available. For example, consider the callback implementation in (c) that
reads and writes a shared variable x, and then releases the lock. Since the callback is
only supposed to be invoked with the lock held, we strengthen [t := x] and [x :=
t + 1] with the gate assert tid != nil && l == tid, which makes the operations
commutative. Together with RELEASE being a left mover, we use synchronization to show
that Callback refines the atomic action CALLBACK in (d). Now that we have an atomic
action specification for Callback, we use it to eliminate the pending async in ACQUIRE
and obtain the atomic action ACQUIRE’ in (e). Notice how the gates of CALLBACK are
discharged by the code preceding the pending async in ACQUIRE. Finally, we can abstract
away the lock acquire and release, such that the client of the lock service only sees the
atomic action ACQUIRE’’ in (f).

4.2.3 Layered Refinement Proofs

Our proof rules connect a lower-level, more fine-grained program with a higher-level, more
coarse-grained program (both a bottom-up and top-down interpretation is possible), and
repeated applications lead to a hierarchy of connected programs. However, due to the
structure-preserving nature of our rules, in practice (Section 4.7) the programmer only
writes a single program with layer annotations [70] that encode the program on multiple
layers of abstraction. Our verifier automatically extracts the hierarchy of programs and
generates the necessary verification conditions to justify their connection.



57

4.3 An Asynchronous Programming Language

In this section we define a core asynchronous programming language on which we formalize
our verification technique, and recall the notion of mover types and reduction.

Variables and stores. Let Var be a set of variables partitioned into global variables
GVar and local variables LVar , and RVar ⊆ LVar is a set of return variables. A store
is a mapping σ : Var → Val that assigns a value from a domain Val to every variable.
Similarly, g : GVar → Val is a global store and ℓ : LVar → Val is a local store. Let g·ℓ
denote the combination of g and ℓ into a store. To model return values from a procedure
with local store ℓ1 to a caller procedure with local store ℓ2, we define the resulting store at
the caller as ℓ1 ▷ ℓ2 = λv. if v ∈ RVar then ℓ1(v) else ℓ2(v).

Atomic actions. We generalize gated actions introduced in [41] with the idea of pending
asyncs. An atomic action is a pair (ρ, τ), where the gate ρ is a set of stores and the update
τ is a set of transitions (σ, σ′,Ω) where σ,σ′ are stores and Ω is a finite multiset of pending
asyncs (ℓ, P ) consisting of a local store and a procedure name. If an atomic action is
executed in a store σ with σ ̸∈ ρ, the program “fails”; otherwise, if σ ∈ ρ, a transition
(σ, σ′,Ω) ∈ τ atomically updates the store to σ′ and creates new threads according to Ω.

Remark 2. Atomic actions subsume many standard programming language statements. In
particular, (nondeterministic) assignments, assertions, and assumptions. The following
table shows some examples ranging over variables x and y.

command gate update
x := x+ y true x′ = x+ y ∧ y′ = y
havoc x true y′ = y
assert x < y x < y x′ = x ∧ y′ = y
assume x < y true x < y ∧ x′ = x ∧ y′ = y

Syntax. A program P is a finite mapping from atomic action names A to atomic actions,
and procedure names P to statements s of the form

s ::= skip | s; s | if le then s else s | call A | call P | async P.

A program contains a dedicated procedureMain that serves as an entry point for executions,
and every atomic action name respectively procedure name appearing in a call statement
must be properly mapped to an atomic action respectively statement. We will write
P .A and P .P for P(A) and P(P ), and A,P ∈ P for A,P ∈ dom(P). We identify the
conditional expression le with the set of local stores that satisfy it.

Semantics. A frame f is a pair (ℓ, s) of local store ℓ and statement s. A thread t is a

sequence of frames f⃗ , denoting a call stack. A state (g, T ) is a pair of global store g and a
finite multiset of threads T . By slight abuse of notation we will identify a thread t with
the singleton multiset {t}, and thus write T ⊎ t for adding t to T . Let statement contexts
SC , frame contexts FC , and thread contexts TC be defined as follows:

SC ::= •Stmt | SC ; s FC ::= (•LStore , SC ) TC ::= FC ·f⃗



58

(g,TC [ℓ][skip; s] ⊎ T ) ⇒ (g,TC [ℓ][s] ⊎ T ) Seq

P.A = (ρ, τ) g·ℓ ∈ ρ (g·ℓ, g′·ℓ′,Ω) ∈ τ

T ′ = {(ℓ′′, call P ) | (ℓ′′, P ) ∈ Ω}
(g,TC [ℓ][call A] ⊎ T ) ⇒ (g′,TC [ℓ′][skip] ⊎ T ′ ⊎ T )

ActionStep

P.A = (ρ, τ) g·ℓ ̸∈ ρ

(g,TC [ℓ][call A] ⊎ T ) ⇒  ActionFail

s′ = if (ℓ ∈ le) then s1 else s2

(g,TC [ℓ][if le then s1 else s2] ⊎ T ) ⇒ (g,TC [ℓ][s′] ⊎ T )
If

(g,TC [ℓ][call P ] ⊎ T ) ⇒ (g, (ℓ,P.P )·TC [ℓ][skip] ⊎ T ) Call

(g, (ℓ1, skip)·TC [ℓ2][s] ⊎ T ) ⇒ (g,TC [ℓ1 ▷ ℓ2][s] ⊎ T ) Return

(g,TC [ℓ][async P ] ⊎ T ) ⇒ (g,TC [ℓ][skip] ⊎ (ℓ, call P ) ⊎ T ) Async

(g, (ℓ, skip) ⊎ T ) ⇒ (g, T ) End

Figure 4.3: Small-step operational semantics

TC [ℓ][s] denotes the thread obtained by filling the two unique holes •Stmt and •LStore in
TC with statement s and local store ℓ, respectively. Thus, TC [ℓ][s] executes s from ℓ as
next step. The operational semantics is formalized in Figure 4.3 as a transition relation
⇒ between states. An execution π is a sequence of states x0 ⇒ x1 ⇒ . . . , and we write
π : x0 ⇒∗ xn to denote that π is an execution that starts in x0 and ends in xn.

Refinement. Given a program P, we are interested in executions that start with a
single thread executing Main from some initial store σ = g·ℓ, i.e., executions that start
in a state (g, (ℓ, call Main)). In particular, we are interested in executions that either
fail or terminate. We define Bad(P) to be the set of initial stores associated with failing
executions, and Good(P) to be the relation between initial and final stores associated with
terminating executions :

Bad(P) =
{
g·ℓ |

(
g, (ℓ, call Main)

)
⇒∗  

}
;

Good(P) =
{
(g·ℓ, g′) |

(
g, (ℓ, call Main)

)
⇒∗ (g′,∅)

}
.

A program P1 refines a program P2, denoted P1 ≼ P2, if (1) Bad(P1) ⊆ Bad(P2) and
(2) Bad(P2) ◦Good(P1) ⊆ Good(P2); · is set complement, ◦ is relation composition. The
first condition states that P2 has to preserve failing executions of P1. The second condition
states that P2 has to preserve terminating executions of P1 for initial states that cannot
fail. That is, P2 can fail more often than P1.

Reduction. Let M be a mapping from atomic action names to mover types [47]: B
(both mover), L (left mover), R (right mover), N (non-mover). Intuitively, an atomic
action is a right mover, if it commutes to the right (i.e., later in time) with respect to all
other atomic actions in P . A left mover is symmetric, and an atomic action can be both a
left and right mover. Reduction has traditionally been applied to multithreaded programs



59

A

RM LM
B,R,L,N

B,R B,L

Figure 4.4: Atomicity automaton.

to convert a sequence of atomic actions performed by a single thread into an atomic block.
The sequence of mover types of the atomic actions in this block must be a valid run of
the nondeterministic atomicity automaton A in Figure 4.4. In this paper, we exploit and
extend this work to synchronize asynchronous computation spanning multiple threads.

We define the predicate MoverValid(P ,M) which holds whenever the atomic actions
in P satisfy the mover types indicated by M . Formally, MoverValid(P ,M) holds if for
all A1, A2 ∈ P with P .A1 = (ρ1, τ1) and P .A2 = (ρ2, τ2), the following conditions hold
(generalizing [57] to support pending asyncs).

• Commutativity: If M(A1) ∈ {R,B} or M(A2) ∈ {L,B}, then the effect of
executing A1 followed by A2 in two different threads can also be achieved by A2

followed by A1.

∀g, ḡ, g′, ℓ1, ℓ′1,
ℓ2, ℓ

′
2,Ω1,Ω2

∃ĝ,Ω′
1,Ω

′
2

:

⎛⎜⎜⎝ ∧
∧
∧

g·ℓ1 ∈ ρ1
g·ℓ2 ∈ ρ2
(g·ℓ1, ḡ·ℓ′1,Ω1) ∈ τ1
(ḡ·ℓ2, g′·ℓ′2,Ω2) ∈ τ2

⎞⎟⎟⎠ =⇒

⎛⎝ ∧
∧

(g·ℓ2, ĝ·ℓ′2,Ω′
2) ∈ τ2

(ĝ·ℓ1, g′·ℓ′1,Ω′
1) ∈ τ1

Ω1 ⊎ Ω2 = Ω′
1 ⊎ Ω′

2

⎞⎠

• Forward preservation: If M(A1) ∈ {R,B} or M(A2) ∈ {L,B}, then the failure
of A2 after the execution of A1 implies that A2 must also fail before the execution of
A1.

∀g, g′, ℓ1, ℓ′1, ℓ2,Ω1 : (g·ℓ1 ∈ ρ1 ∧ g·ℓ2 ∈ ρ2 ∧ (g·ℓ1, g′·ℓ′1,Ω1) ∈ τ1) =⇒ g′·ℓ2 ∈ ρ2

• Backward preservation: If M(A2) ∈ {L,B}, then the failure of A1 before the
execution of A2 implies that A1 must also fail after the execution of A2.

∀g, g′, ℓ1, ℓ2, ℓ′2,Ω2 : (g·ℓ2 ∈ ρ2 ∧ (g·ℓ2, g′·ℓ′2,Ω2) ∈ τ2 ∧ g′·ℓ1 ∈ ρ1) =⇒ g·ℓ1 ∈ ρ1

• Nonblocking: If M(A2) ∈ {L,B}, then A2 must be nonblocking.

∀σ ∈ ρ2 ∃σ′,Ω : (σ, σ′,Ω) ∈ τ2

• Async freedom: If M(A1) ∈ {R,B}, then A1 cannot have pending asynchronous
calls.

∀σ, σ′,Ω : σ ∈ ρ1 ∧ (σ, σ′,Ω) ∈ τ1 =⇒ Ω = ∅



60

¬



®

¯

t1

t0

t2

t3

R

L L

L

L

L

t1

t0

t2

t3

t1

t0

t3

t1

t0

t3
callA

t1

t0

t2

t3

R

L L

t1

t0

t2

t3

t1

t0

t3
callA

E

E

E

L

L L

...

¶

·

¸

¶

Figure 4.5: Synchronizing asynchronous executions

4.4 Synchronizing Asynchrony

In this section, we formalize the synchronization proof rule which allows us to transform a
procedure into an atomic action that summarizes asynchronous effects, either directly or
via pending asyncs. Synchronization requires two technical innovations. First, we extend
the commutativity conditions required for reduction to account for asynchronous thread
creation. Second, we impose a new cooperation condition necessary for the soundness of
our transformation.

Given a procedure Q, a mover typing M , and a set of procedures Σ to synchronize
in Q (asynchronous calls to procedures not in Σ are treated as pending asyncs), the
Synchronize rule transforms procedure Q into an atomic action (ρ, τ) with fresh name A:

Synchronize

MoverValid(P ,M) Sync(P ,M,Q,Σ) Refinement(P , Q,Σ, ρ, τ)
P ⇝ P [Q ↦→ call A] ∪ [A ↦→ (ρ, τ)]

Q ∈ P
A ̸∈ P

We already defined MoverValid in the previous section. Now we informally discuss
the soundness of Synchronize, and formally defined the other two premises Sync and
Refinement . In the next section we show how all premises can be efficiently checked in
practice.

Theorem 5. If P1 ⇝ P2 using the Synchronize rule, then P1 ≼ P2.

Intuition. The core idea of Theorem 5 is the rewriting of a P1-execution π1 into an
equivalent P2-execution π2. Concretely, (1) if π1 fails then π2 must fail, and (2) if π1
terminates then π2 must either terminate with the same final state or fail. We illustrate
this transformation in Figure 4.5. On the left, ① shows part of an asynchronous execution,
initially comprising two threads t0 and t1. Thread t1 executes the transformed procedure
Q (the call and return are indicated with black bars), which makes an asynchronous call to
spawn t2, and t2 asynchronously spawns t3. Notice that t2 terminates after three steps. We
consider the procedure of t2 to be in Σ (i.e., to be synchronized), while the procedure of t3
is not in Σ (i.e., to be treated as pending async). Our goal is to transform execution ① into
execution ②, which has the following properties: (1) Q executes without interruption from
t0, (2) t2 terminates without interruption before t1 continues, and (3) t3 only starts after
Q returns. To permit this transformation, Sync requires that Q, including asynchronous



61

A∗

RM LM
L,N

B,R B,L

>

*

⊥

*

N,R

Figure 4.6: Tracking automaton.

calls to procedures in Σ, executes a sequence of right movers, followed by at most one
non-mover, followed by a sequence of left movers. Furthermore, the asynchronous calls to
procedures in Σ must only execute left movers. The steps of t1 and t2 in ① are labeled with
mover types that satisfy this conditions. When moving the right mover to the right and the
left movers to the left to obtain ②, the commutativity, forward preservation, and backward
preservation properties of MoverValid guarantee that the executions stay equivalent. Now,
as shown in ③, the steps of t2 can be considered to execute synchronously in its parent t1.
Finally, Refinement ensures that the synchronized behavior of Q is summarized by the
atomic action A in ④, which captures the creation of t3 as pending async.

On the right of Figure 4.5, ❶ shows an execution where Q started, but then t0 failed.
Notice that, if all steps of Q before the failure are right movers, these steps can be removed
from the execution (by moving them to the right, “past” the failure), and the failure occurs
before Q even starts. In ❶, however, Q already executed a left mover. Even if we move
the steps of Q together, the partial execution of Q is not summarized by A. However, we
know that only left movers can follow in t1 and t2. Since left movers are non-blocking
and backward preserving, they can be inserted at the end of the execution, right before
the failure. The cooperation condition (part of Sync) ensures that this can be done so
that Q is completed, as shown in ❷. Then we can again arrive at an execution where Q is
replaced by A (see ❸).

Concurrent tracking semantics. The execution in ① is labeled with mover types that
allowed us to rearrange the steps of Q to obtain the execution in ②. To characterize the
executions for which such a rearrangement is possible in general, we define the concurrent

tracking semantics
M,Q,Σ
===⇒ (Figure 4.7) that is similar to ⇒, except that we additionally

track a mover phase m in frames, which is one of the states of the tracking automaton
A∗ in Figure 4.6: ⊤ (no tracking), RM (right-mover phase), LM (left-mover phase),
⊥ (violation). Call transitions from ⊤ to RM on a top-level call to Q, or otherwise
propagates the mover phase of the caller to the callee. Conversely, Return transitions
back to ⊤ when returning from a top-level call to Q, or otherwise propagates the mover
phase of the callee to the caller. ActionStep follows a transition in A∗ according to the
mover type of the invoked atomic action. In particular, if we are tracking (m ̸= ⊤), we stay
in RM until a non-right mover (L or N) causes a transition to LM. In LM only left movers
should follow, and thus the occurrence of a non-left mover (N or R) causes a transition
to the violation state ⊥. Notice that the async freedom condition of MoverValid forces
a thread that executes an atomic action with pending asyncs to LM. This is important
to ensure that only left movers can follow, which can be moved before the steps of any
pending async. Similarly, Async transitions the parent thread of an asynchronous call to
LM. The child thread is set to LM if we want to synchronize the call, otherwise it is not
tracked. In both ActionStep and Async, if an untracked child thread executes call Q,
the subsequent application of Call will start to track the child tread separately.



62

M,Q,Σ
====⇒

(g,TC [ℓ][skip; s][m] ⊎ T )
M,Q,Σ
====⇒ (g,TC [ℓ][s][m] ⊎ T ) Seq

P.A = (ρ, τ) g·ℓ ∈ ρ (g·ℓ, g′·ℓ′,Ω) ∈ τ m′ = A∗(m,M(A))

T ′ = {(ℓ′′, call P,⊤) | (ℓ′′, P ) ∈ Ω}

(g,TC [ℓ][call A][m] ⊎ T )
M,Q,Σ
====⇒ (g′,TC [ℓ′][skip][m′] ⊎ T ′ ⊎ T )

ActionStep

P.A = (ρ, τ) g·ℓ ̸∈ ρ

(g,TC [ℓ][call A][m] ⊎ T )
M,Q,Σ
====⇒  

ActionFail

s′ = if (ℓ ∈ le) then s1 else s2

(g,TC [ℓ][if le then s1 else s2][m] ⊎ T )
M,Q,Σ
====⇒ (g,TC [ℓ][s′][m] ⊎ T )

If

m′ = if (m = ⊤ ∧ P = Q) then RM else m

(g,TC [ℓ][call P ][m] ⊎ T )
M,Q,Σ
====⇒ (g, (ℓ,P.P,m′)·TC [ℓ][skip][m] ⊎ T )

Call

m′ = if (m2 = ⊤) then ⊤ else m1

(g, (ℓ1, skip,m1)·TC [ℓ2][s][m2] ⊎ T )
M,Q,Σ
====⇒ (g,TC [ℓ1 ▷ ℓ2][s][m

′] ⊎ T )
Return

m′ = if (m ̸= ⊤) then LM else ⊤ m′′ = if (m ̸= ⊤ ∧ P ∈ Σ) then LM else ⊤
(g,TC [ℓ][async P ][m] ⊎ T )

M,Q,Σ
====⇒ (g,TC [ℓ][skip][m′] ⊎ (ℓ, call P,m′′) ⊎ T )

Async

(g, (ℓ, skip,m) ⊎ T )
M,Q,Σ
====⇒ (g, T ) End

Σ−→

(g,TC [ℓ][skip; s],Ω)
Σ−→ (g,TC [ℓ][s],Ω) Seq

P.A = (ρ, τ) g·ℓ ∈ ρ (g·ℓ, g′·ℓ′,Ω) ∈ τ

(g,TC [ℓ][call A],Ω′)
Σ−→ (g′,TC [ℓ′][skip],Ω ⊎ Ω′)

ActionStep

P.A = (ρ, τ) g·ℓ ̸∈ ρ

(g,TC [ℓ][call A],Ω)
Σ−→  

ActionFail

s′ = if (ℓ ∈ le) then s1 else s2

(g,TC [ℓ][if le then s1 else s2],Ω)
Σ−→ (g,TC [ℓ][s′],Ω)

If

(g,TC [ℓ][call P ],Ω)
Σ−→ (g, (ℓ,P.P )·TC [ℓ][skip],Ω) Call

(g, (ℓ1, skip)·TC [ℓ2][s],Ω)
Σ−→ (g,TC [ℓ1 ▷ ℓ2][s],Ω) Return

(g,TC [ℓ][async P ],Ω)
Σ−→

{
(g,TC [ℓ][skip], (ℓ, P ) ⊎ Ω) if P ̸∈ Σ
(g, (ℓ, call P )♯·TC [ℓ][skip],Ω) if P ∈ Σ

Async

(g, (ℓ, skip)♯·f⃗ ,Ω) Σ−→ (g, f⃗ ,Ω) AsyncReturn

Figure 4.7: Concurrent tracking semantics
M,Q,Σ
===⇒ and sequential synchronized semantics

Σ−→



63

Sequential synchronized semantics. In ③ we are concerned with the sequential
execution of Q, with asynchronous calls to procedures in Σ being synchronized. We

formally define the sequential synchronized semantics
Σ−→ (Figure 4.7) that executes a single

thread and stores a multiset of pending asyncs. In ActionStep, the pending asyncs of
an atomic action are added to the already existing pending asyncs. For an asynchronous
call to P , Async records a pending thread creation if P ̸∈ Σ, and synchronizes the
call if P ∈ Σ. The synchronized stack frame is marked with ♯ such that it is popped
in AsyncReturn without writing return variables to the caller. This technicality is
necessary in our formalization. In practice, asynchronously called procedures simply cannot
have return parameters.

With the concurrent tracking semantics and the sequential synchronized semantics we
can now formally define Sync and Refinement .

Sync. Sync(P ,M,Q,Σ) comprises the following two conditions:

S1 (g, (ℓ, call Main,⊤))
M,Q,Σ
===⇒∗ (g′,TC [ℓ′][s][m] ⊎ T ) implies m ̸= ⊥;

S2 (g, (ℓ, call Main,⊤))
M,Q,Σ
===⇒∗ (g′,TC [ℓ′][call P ][LM] ⊎ T ) implies

(g′, (ℓ′, call P ),∅)
Σ−→∗ (g′′, (ℓ′′, skip),Ω′′).

S1 states that executions respect the required mover sequences, i.e., no violation is reachable
in the tracking semantics. S2 (the cooperation condition) states that every procedure
call in the left-mover phase can be completed. The repeated application of S1 allows us
to complete partial executions of Q. Note that S2 also captures asynchronous calls to
procedures P with P ∈ Σ, since the operational semantics rewrites async P into call P .

Refinement. Refinement(P , Q,Σ, ρ, τ) comprises the following two conditions:

R1 ρ ∩ {g·ℓ | (g, (ℓ,P .Q),∅)
Σ−→∗  } = ∅;

R2 ρ ◦ {(g·ℓ, g′·ℓ′,Ω) | (g, (ℓ,P .Q),∅)
Σ−→∗ (g′, (ℓ′, skip),Ω)} ⊆ τ .

R1 states that the gate of A is strong enough to filter out all failures of Q, and R2 states
that the transition relation of A captures all non-failing executions of Q.

4.5 Verifying Synchronization

In this section we show how the premises of the Synchronize rule can be efficiently
checked in practice. The MoverValid and Refinement premises both lead to standard
verification conditions. In particular, the constraints ofMoverValid state the commutativity
of individual atomic actions, and the constraints of Refinement state that a sequential
procedure is summarized by a transition relation, which can be readily handed off to
logical reasoning engines. Thus we focus on Sync which we decompose as follows:

StaticSync(P ,M,Q,Σ,Pre) Safe(P ,Pre) Terminates(P ,Σ,Pre, Red)
Sync(P ,M,Q,Σ)

We establish Sync in three steps. First, StaticSync is a static control-flow analysis that
over-approximates the tracking semantics. It uses the domain of a precondition mapping



64

Pre, a partial mapping from procedure names to sets of stores. If StaticSync succeeds, it
guarantees S1 (i.e., that ⊥ cannot be reached) and that all procedures P called with mover
phase LM in S2 are in dom(Pre). Second, we over-approximate the possible stores g′·ℓ′ at
these calls. For that, Safe requires that Pre denotes valid preconditions, i.e., if call P
is reachable with store g′·ℓ′, then g′·ℓ′ ∈ Pre(P ) for all P ∈ dom(Pre). Then finally, to
establish S2, it remains to show that there is some terminating sequential execution from
(g′, (ℓ′, call P ),∅) for every P ∈ dom(Pre) and g′·ℓ′ ∈ Pre(P ). Terminates reduces these
cooperation checks to standard termination checks on a restricted program. In particular,
the restriction function Red limits the nondeterministic behavior of some atomic actions.
Then showing that all executions in the restricted program terminate implies that there
is some terminating execution in the original program (given that Red is not allowed to
make atomic actions blocking).

StaticSync. Let E be the function that maps a mover type to the corresponding set of
edges in A, e.g., E(R) = {RM → RM,RM → LM}. We define an interprocedural control

flow analysis that lifts E to a mapping Ê on statements, corresponding to the paths a
statement may take in the tracking semantics. We write StaticSync(P ,M,Q,Σ,Pre) if

there is a solution Ê(P .Q) ̸= ∅ to the following equations w.r.t. M , Σ and Pre:

Ê(skip) = E(B)
Ê(call A) = E(M(A))

Ê(s1; s2) = Ê(s1) ◦ Ê(s2)
Ê(if le then s1 else s2) = Ê(s1) ∩ Ê(s2)

Ê(call P ) =
{

Ê(P .P ) if P ∈ dom(Pre)

Ê(P .P ) ∩ {RM}2 if P ̸∈ dom(Pre)

Ê(async P ) =

⎧⎨⎩
{LM}2 if P ̸∈ Σ

{LM}2 ∩ Ê(P .P ) if P ∈ Σ ∩ dom(Pre)
∅ if P ∈ Σ \ dom(Pre)

The equations on the left capture regular control-flow propagation. The equation for
call P has two cases. If P ∈ dom(Pre), we do not restrict the call since P is cooperative.
However, if P ̸∈ dom(Pre) we must restrict the call to stay in the right-mover phase,
because we cannot rely on the cooperation condition to complete partial executions of
Q. The equation for async P has three cases. If P ̸∈ Σ, we do not synchronize P and
thus only require the caller to be followed by only left movers. If P ∈ Σ ∩ dom(Pre), we
additionally require the invoked procedure P to be only left movers. For synchronized
procedures we always have to establish cooperation, thus the case P ∈ Σ \ dom(Pre) is
not allowed.

If StaticSync(P ,M,Q,Σ,Pre), then S1 holds and for every call P reachable with LM
in S2 we have P ∈ dom(Pre). Hence, we must check cooperation for all procedures in
dom(Pre).

Safe. Now that we know the procedures that need to be checked for cooperation, we
want to know the stores from which to check cooperation. For that, Pre must denote valid



65

preconditions. We write Safe(P ,Pre), if (g, (ℓ, call Main)) ⇒∗ (g′,TC [ℓ′][call P ] ⊎ T )
implies g′·ℓ′ ∈ Pre(P ) for all P ∈ dom(Pre).

Terminates. Finally, we establish S2 by showing that all procedures P in dom(Pre)
cooperate from states in Pre(P ). Suppose that cooperation holds, but termination
(which is stronger) does not. Such a difference between termination and cooperation
must be due to nondeterminism. Thus, if we suitably restrict the nondeterminism to
eliminate nonterminating behaviors, proving termination for the restricted program implies
cooperation for the original program. Formally, a restriction function Red is a partial
mapping from atomic action names to atomic actions, such that for all A ∈ dom(Red)
with P .A = (ρ, τ) it holds that Red(A) = (ρ, τ ′) with τ ′ ⊆ τ and Red(A) is nonblocking.
Let PRed be the program equal to P , except that PRed.A = Red(A) for A ∈ dom(Red).

We write Terminates(P ,Σ,Pre, Red), if for all P ∈ dom(Pre) and g·ℓ ∈ Pre(P ), there

is no infinite sequential synchronized PRed-execution (g, (ℓ, call P ),∅)
Σ−→ · · · . Notice

that these termination checks can now be solved by a standard termination checker for
sequential programs. While it is possible for the programmer to explicitly provide restricted
atomic actions, in practice we did not found this necessary for any of our examples. Instead,
a fixed policy to resolve nondeterministic branching (e.g., always take the then branch)
was enough. For example, recall the program in Figure 4.1 (c). Always taking the then
branch (i.e., resolving the nondeterministic choice to true) allows us to prove termination
and thus implies cooperation of the original program.

Theorem 6. If we have StaticSync(P ,M,Q,Σ,Pre), Safe(P ,Pre), and
Terminates(P ,Σ,Pre, Red), then Sync(P ,M,Q,Σ) holds.

4.6 Eliminating Pending Asynchrony

In the previous two sections we showed how the Synchronize rule allows to summa-
rize procedures to atomic actions, by either directly synchronizing asynchronous calls
or keeping them as pending asyncs. In this section we present the complementary
PendingAsyncElim rule to eliminate pending asyncs from atomic actions.

Let A be an atomic action with pending asyncs to a procedure P . Eliminating those
pending asyncs requires that (1) P is summarized to an atomic action, say B, and (2) B
must be a left mover, since we will directly compose its effect with A. Now we show the
construction of the new gate and update for A. The new gate is obtained by filtering out
all states from the gate of A that can cause B to fail. In other words, we strengthen A’s
gate such that it cannot make a transition to a state where B fails:

Gt(ρA, τA, ρB, P ) =

{
σ ∈ ρA | ∀ g′, ℓ′,

ℓP ,Ω
:
(σ, g′·ℓ′, (ℓP , P ) ⊎ Ω) ∈ τA

=⇒ g′·ℓP ∈ ρB

}
The new update consists of two parts. First, we take all transitions without pending
asyncs to P :

Upd1 (τA, P ) = {(σ, σ′,Ω) ∈ τA | ¬∃ℓP : (ℓP , P ) ∈ Ω}
Second, we compose all transitions with a pending async to P with the transitions of B:

Upd2 (τA, τB, P ) =

{
(σ, g′′·ℓ′,Ω ⊎ Ω′) | ∃ g′, ℓP ,

Ω, ℓ′′
: ∧ (σ, g′·ℓ′, (ℓP , P ) ⊎ Ω) ∈ τA

(g′·ℓP , g′′·ℓ′′,Ω′) ∈ τB

}



66

Notice that the transitions of B can have pending asyncs that are absorbed into the
resulting transition. Combining all pieces, we obtain the following rule for eliminating
pending asyncs:

PendingAsyncElim

P .P = call B P .B = (ρB, τB) M(B) ∈ {L,B}
ρ′A = Gt(ρA, τA, ρB, P ) τ ′A = Upd1 (τA, P ) ∪ Upd2 (τA, τB, P )

P ⊎ [A ↦→ (ρA, τA)]⇝ P ⊎ [A ↦→ (ρ′A, τ
′
A)]

Example 1. Recall our motivating lock service example from Section 4.2.2. Eliminating
the pending async in ACQUIRE is a formal application of PendingAsyncElim with
P = Callback, A = ACQUIRE, and B = CALLBACK. The resulting action (the new A) is
ACQUIRE’.

Theorem 7. If P1 ⇝ P2 using the PendingAsyncElim rule, then P1 ≼ P2.

PendingAsyncElim eliminates a single pending async to P in A. Iterative ap-
plication of the rule allows us to eliminate finitely many pending asyncs. In theory,
PendingAsyncElim can be generalized with an induction schema to eliminate unbound-
edly many pending asyncs, but we did not find this necessary in practice.

4.7 Evaluation

We implemented our verification method in Civl [56], a verification system for concurrent
programs based on automated and modular refinement reasoning. In Civl, a program is
specified and verified across multiple layers of refinement. At each layer, procedures can
be declared to refine atomic actions and henceforth appear atomic to higher layers. This
means that an input program with layer annotations implicitly describes the program at
multiple levels of abstraction, and Civl automatically checks refinement between programs
on adjacent layers.

We implemented and verified a collection of nine benchmarks, of which five expand
on our motivating example from Section 4.2.1, one is a ping-pong agreement protocol
that exercises the notion of cooperation, and the remaining three examples are discussed
in the remainder of this section to illustrate (1) the interaction with Civl and modular
verification via pending asyncs, (2) the applicability to challenging concurrency, and
(3) one-shot synchronization of nested asynchronous calls. Overall, our benchmarks
capture realistic patterns of asynchronous computation. All benchmarks are verified by
our tool in less than three seconds. The implementation and benchmarks are available at
https://github.com/boogie-org/boogie.

The proof rules introduced in this paper are crucial to preserving the layered verification
approach in Civl and exploiting it to construct compact and highly-automated proofs
with simple invariants [70]. Without our new rules, Civl proofs of our benchmarks would
amount to single-layer proofs with monolithic invariants in a style similar to classical
proofs of distributed systems in modeling frameworks such as TLA+ [76].

4.7.1 Lock Service

In this section we illustrate how synchronization and pending async elimination are offered
to a programmer in Civl by revisiting the lock service example from Section 4.2.2.

https://github.com/boogie-org/boogie


67

action {:atomic}{:layer 1,1}
CAS_l (oldval:Tid, newval:Tid) returns (b:bool)
{

if (l == oldval) {
l := newval; b := true;

} else {
b := false;

}
}

procedure {:layer 1}{:refines ACQUIRE}
Acquire (tid:Tid)
{

var b:bool;
b := false;
while (!b) call b := CAS_l(nil, tid);
async call Callback(tid);

}

action {:atomic}{:layer 2,3} ACQUIRE (tid:Tid)
{

assert tid != nil;
assume l == nil;
l := tid;
async call Callback(tid);

}

procedure {:layer 2}{:refines CALLBACK}
Callback (tid:Tid)
{

/* not shown */
}

action {:left}{:layer 3} CALLBACK (tid:Tid)
{

assert tid != nil && l == tid;
x := x + 1;
l := nil;

}

Figure 4.8: Lock service in Civl (excerpt)

Figure 4.8 shows a fragment of our Civl implementation. First, let us understand the
layer annotations in more detail. A procedure has a single layer number x that denotes the
layer at which the procedure is shown to refine an atomic action. At all layers up to x calls
to the procedure behave according to its implementation, and at layers higher than x calls
to the procedure behave according to its refined atomic action. Atomic actions have an
associated layer range [x, y], which denotes at which layers the action is “available”. For
each layer, the set of available atomic actions is subject to pairwise commutativity checks.
In Figure 4.8, the procedure Acquire is declared to refine the atomic action ACQUIRE at
layer 1, which causes Civl to apply synchronization. The implementation makes two calls,
a synchronous call to a compare-and-swap operation which is already atomic at layer 1,
and an asynchronous call to Callback. Since Callback is refined at the higher layer 2,
the asynchronous call results in a pending async in the atomic action ACQUIRE. Thus, at
layer 2, ACQUIRE is exactly the client-independent specification of Acquire we presented
in Figure 4.2 (b).

Now Callback (whose implementation is not shown) is declared to refine CALLBACK
at layer 2. This causes Civl to apply pending async elimination in ACQUIRE at layer 3;
the pending async to Callback is replaced with the effect of CALLBACK. Thus, at layer 3,
ACQUIRE corresponds to ACQUIRE’ in Figure 4.2 (e).

This example illustrates two important aspects of our proof method and its integration
into Civl. First, on the conceptual side, our method enables independent and modular
reasoning about the lock service implementation and its client. The atomic action ACQUIRE
can be (1) proved for a different implementation of the lock without the need to re-verify
the client, and (2) used to reason about a different client by letting Civl apply pending
async elimination for a different client (i.e., Callback implementation). Second, on the
practical side, the application of synchronization and pending async elimination in Civl is
driven by layer annotations. The programmer does not have to explicitly write the program
under consideration at every layer of abstraction and specify the transformation that
connects them. Instead, Civl automatically constructs per-layer versions of procedures
and atomic actions.



68

C_TransReq P_VoteReq

C_VoteYes

C_VoteNo

P_Commit

P_Abort

synchronize synchronize synchronize

Figure 4.9: 2PC call hierarchy (from left to right) and proof outline (right to left)

4.7.2 Two-phase Commit

In this section we show that our method applies to realistic programs with intricate
concurrency by verifying full functional correctness of the two-phase commit (2PC) protocol.
The protocol employs a coordinator process to consistently replicate transactions among
a set of participant processes. In the first phase, the coordinator broadcasts incoming
request to all participants, which respond either with a “yes” vote to commit, or a “no”
vote to abort. In the second phase, the coordinator processes incoming votes as follows:
(1) If all participants voted “yes” it broadcasts a “commit” message, or (2) as soon as
a single participant votes “no” it broadcasts an “abort” message. Due to asynchrony
and message reordering, the protocol implementation must be robust against unexpected
situations. For example, a participant can receive an abort message before it receives the
corresponding vote request.

Figure 4.9 shows the message handlers of the protocol we implemented in Civl,
together with the asynchronous communication structure. For example, P_VoteReq is a
participants handler for vote requests, which asynchronously invokes either the coordinators
C_VoteYes or C_VoteNo handler. To reason about the protocol, we use a variable state
such that for every transaction xid and process pid, state[xid][pid] is one of INIT,
COMMIT, or ABORT. We prove a top-level atomic action specification for C_TransReq
that states that for a fresh xid, state[xid] is consistently updated, i.e., there are no
two processes such that one is COMMIT and the other one ABORT. Figure 4.9 also shows
the proof outline, making repeated use of synchronization. Here we focus on the first
synchronization of P_Commit and P_Abort, which requires them to be left movers. A
priori these operations do not commute, because they write the conflicting values COMMIT
and ABORT to state[xid][pid], respectively. However, by making it explicit that the
coordinator has to decide on a transaction first, the following abstractions are commutative:

action P_Commit (pid,xid):
assert state[xid][C] == COMMIT
state[xid][pid] := COMMIT

action P_Abort (pid,xid):
assert state[xid][C] == ABORT
state[xid][pid] := ABORT

Our proof of 2PC confirms that the benefit of reduced invariant complexity in structured
multi-layer refinement proofs [56] carries over to the asynchronous setting. In particular,
we could state the central correctness invariant in terms of the protocol mechanism (i.e.,
voting and phases) after hiding low-level implementation details (i.e., counting).



69

4.7.3 Task Distribution Service

Finally, we verified a task distribution service inspired by a set of benchmarks from [12].
This example captures a whole class of similar benchmarks, where a set of independent
tasks is processed by passing through a sequence of stages. The result of every stage
is asynchronously communicated to the next stage, and different tasks can run through
different stages. However, concurrent tasks do not interfere with each other. With this key
difference to examples like 2PC, we can avoid the overhead of stepwise synchronization
over several layers. Instead, synchronization can be applied to eliminate long (and even
unbounded) chains of asynchronous calls in a single layer.

To summarize, synchronization is applicable to tightly interfering programs using
program layers, and less interference leads to even simpler proofs.

4.8 Related Work

The idea of taming concurrency through synchrony is also at the heart of other works.
Brisk [12] computes canonical sequentializations of message-passing programs by matching
sends with corresponding receives. Our work differs in the programming model (dynamic
thread creation vs. parametric processes with blocking receives) and the verification goal
(deductive functional correctness vs. automatic deadlock-freedom). The work in [20]
proposes the notion of robustness against concurrency as correctness condition for a class
of event-driven programs. That is, the sequential behavior of a program is the underlying
specification, and asynchronous executions are checked to conform to sequential executions.
In contrast, we use synchronization to simplify the verification of safety properties.

There are several recent papers on mechanized verification of distributed systems.
IronFleet [55] embeds TLA-style state-machine modeling [76] into the Dafny verifier [77]
to refine high-level distributed systems specifications into low-level executable implementa-
tions. They use a fixed 3-layer design and one-shot reductions to atomic actions, while our
program layers are more flexible. Ivy [98] organizes the search for an inductive invariant as
a collaborative process between automatic verification attempts and user guided generaliza-
tions of counterexamples to induction in a graphical model. They use a restricted modeling
and specification language that makes their verification conditions decidable. We rely on
small partitioned verification conditions that can be discharged by an SMT solver [35].
PSync [40] uses a synchronous round-based model of communication for the purpose of
program design and verification, shifting the complexity of efficient asynchronous execution
to a runtime system. We allow explicit control over low-level details at the potential cost
of increased verification effort. Verdi [116] lets the programmer provide a specification,
implementation, and proof of a distributed system under an idealized network model.
Then the application is automatically transformed into one that handles faults via verified
system transformers. The rely-guarantee rule of [49] and the ALS types of [67] target a
weaker form of asynchrony, where a single task queue atomically executes one task at a
time.

Concurrent separation logic (CSL) [92] was devised for modular reasoning about multi-
threaded shared-memory programs, focusing on the verification of fine-grained concurrent
data structures. CSL adequately addresses the problem of reasoning about low-level
concurrency related to dynamic memory allocation, but still suffers from the complications
of a monolithic approach to invariant discovery for protocol-level concurrency. Recently,



70

CSL has been applied to message-passing programs. The approach in [93] uses CSL to
link implementation steps to atomic actions, and then relies on a model checker to explore
the interleavings of those atomic actions. The work in [104] addresses the composition of
verified protocols using ideas from separation logic. The actor services of [107] focus on
compositional verification of response properties of message-passing programs.

4.9 Conclusion

The contribution of this paper are proof rules to simplify the reasoning about asynchronous
concurrent programs. The impact of our work must be understood in the context of our
two-pronged strategy for aiding interactive and automated verification of asynchronous
programs. First, our proof rules enable asynchronous computation to be summarized
analogous to the summarization of synchronous computation by pre- and post-conditions.
This capability enables the construction of syntax-driven and structured proofs of asyn-
chronous programs. Second, the program simplification enabled by our proof rules attacks
the nemesis of complex invariants induced by a large number of interleaved executions.
Instead of writing a large and complex invariant justifying the overall correctness of the
program, the programmer may now write a sequence of simpler invariants, each justifying
a program simplification.

Our proof method decomposes the task of proving the correctness of a large asyn-
chronous program into formulating and automatically discharging smaller independent
proof obligations. These proof obligations show that an atomic action commutes with
other atomic actions; that an atomic action summarizes the effect of a statement in a
given context; and that an assertion is an inductive invariant for a simpler program, where
asynchronous procedure calls are replaced by synchronous (immediate) atomic actions.
Using our method, the automatable part of a concurrent verification problem—i.e., the
safety proof given an inductive invariant—remains automatable, and the creative part—i.e.,
the discovery of an appropriate invariant—is greatly simplified by structuring it into smaller
proof obligations, each of which can still be discharged automatically.

Acknowledgments

This research was supported in part by the Austrian Science Fund (FWF) under grants
S11402-N23 (RiSE/SHiNE) and Z211-N23 (Wittgenstein Award).



71

5 Inductive Sequentialization of
Asynchronous Programs

Abstract. Asynchronous programs are notoriously difficult to reason about
because they spawn computation tasks which take effect asynchronously in
a nondeterministic way. Devising inductive invariants for such programs re-
quires understanding and stating complex relationships between an unbounded
number of computation tasks in arbitrarily long executions. In this paper,
we introduce inductive sequentialization, a new proof rule that sidesteps this
complexity via a sequential reduction, a sequential program that captures
every behavior of the original program up to reordering of coarse-grained
commutative actions. A sequential reduction of a concurrent program is easy
to reason about since it corresponds to a simple execution of the program in
an idealized synchronous environment, where processes act in a fixed order
and at the same speed. We have implemented and integrated our proof rule in
the Civl verifier, allowing us to provably derive fine-grained implementations
of asynchronous programs. We have successfully applied our proof rule to a
diverse set of message-passing protocols, including leader election protocols,
two-phase commit, and Paxos.

5.1 Introduction

Asynchronous programming is widely adopted for building responsive and efficient software.
Unlike synchronous procedure calls that block the caller and hence must be executed
immediately, asynchronous procedure calls do not block the caller and can be executed
in parallel. Depending on the nature of the application, an asynchronous call could
either execute in the same process (on another thread), a different process on the same
node, or a different node entirely. Asynchronous programming is essential for distributed
fault-tolerant software and client-server applications.

Asynchronous programs are notoriously hard to get right. There is inherent nonde-
terminism in their semantics due to the different orders in which asynchronous calls can
execute. This complexity is exacerbated by further nondeterminism due to the execution
platform, e.g., network delays and partitions in distributed applications. A promising
approach to proving the correctness of realistic implementations is to go through a sequence
of abstraction steps. Each abstraction step leads to a successively simpler program such
that the correctness of the most abstract program implies the correctness of the most con-
crete program. Alternatively, a realistic implementation could be derived from an abstract
(and obviously correct) program through a sequence of refinement steps. Devising an



72

automated program verifier that enables refinement proofs is non-trivial and has received
a great deal of attention recently [26, 56, 55, 52, 112, 71, 34, 53].

Each link in the chain of programs connected together by refinement steps must be
justified by a proof rule. A useful proof rule must be sound, broadly applicable, and
able to simplify reasoning about programs. Many such proof rules already exist including
(1) variable introduction and elimination useful for changing the state representation,
(2) reduction [80] for eliminating preemptions and creating atomic blocks, and (3) summa-
rization for creating summaries of a block of code that executes atomically. These proof
rules work together symbiotically and have been implemented to great effect in several
refinement-oriented program verifiers [41, 26, 56].

In this paper, we introduce Inductive Sequentialization (IS), a new proof rule that
works harmoniously with the other aforementioned proof rules, thereby extending the
overall applicability of refinement-oriented program verifiers. IS simplifies reasoning about
unbounded concurrent executions of an asynchronous program by reducing its correctness
to that of a single interleaving of the concurrently-executing actions of the program. Our
experience shows that the sequential reduction established by IS for a distributed protocol
(like Chang-Roberts [27] and Paxos [75]) corresponds to an execution of the protocol in an
idealized environment where processes execute in a fixed order, at the same speed, and
messages are delivered immediately unless they are lost. This is the simplest execution of
the protocol to reason about.

The goal of IS is to show that an asynchronous program P is a refinement of a sequential
program S. Here refinement means that the summary, the relation between initial and
terminating states, of P is included in that of S. Since any non-terminating program can
be abstracted by one that terminates after a nondeterministically chosen number of steps,
IS is capable of reasoning about all reachable states and arbitrary safety properties of
asynchronous programs. IS combines inductive reasoning, showing that S summarizes a
single fixed interleaving π of the asynchronous calls in P , with commutativity reasoning,
showing that focusing only on this single interleaving is sound.

The induction argument in IS is based on a user-provided (nondeterministic) procedure
I that represents all prefixes of π. The asynchronous procedure calls whose effect is not
included in a particular execution of I remain asynchronous and executable in an arbitrary
order. This proof artifact is the analog of an inductive invariant in a proof of safety.
However, unlike classical inductive invariants, inductiveness in our proof rule is shown
only w.r.t. a single operation at a time, determined by π. The verification conditions
prescribed by IS check that S is the “maximal” prefix of I, which represents the complete
interleaving π where no asynchronous calls remain to execute.

It remains to be shown that the sequential order determined by π and summarized
by I captures all terminating executions of P. To achieve this goal, we exploit the
concept of a left mover [80], an atomic operation that may execute earlier than other
concurrently-executing operations without changing the final state. If all operations in P
are left movers, then they can be reordered arbitrarily, in particular following the fixed
interleaving π, thus allowing us to conclude that every terminating state of P can be
reached by π. This approach does not work on practical protocols because the concrete
operations in P are not left movers. However, we observed that if π is suitably chosen,
then for each operation A executed in π, there is an abstraction A′ of A such that A′ is a
left mover and A′ behaves identically to A in the context of π. This observation allows us
to replace A with A′ when performing the inductiveness check in the IS proof rule. This



73

tight combination of induction, reduction, and abstraction is one of the main technical
contributions of our work (described in detail in Section 5.4).

The applicability of IS is governed by two hypotheses which hold in well-designed
asynchronous systems: (1) to ensure responsiveness, these systems extensively use short-
living asynchronous tasks, e.g., message handlers, that can execute in parallel, and (2)
asynchrony is meant to improve performance but not modify the logic of the application, i.e.,
the asynchronous behaviors should be equivalent to idealized synchronous behaviors where
processes act at the same speed and the infrastructure, e.g., the network, is synchronous.
The second hypothesis in particular has been addressed and justified in the context of a
wide class of applications [20, 22, 29, 42, 34]. The first hypothesis offers more opportunities
for a proof tactic based on reordering actions in an execution, while the second enables
the reduction to reasoning about a single interleaving.

We have implemented IS as an extension of Civl [56], a verification system for
concurrent programs based on automated refinement reasoning. This extension allows IS
to be interleaved with the other proof tactics implemented by Civl. We have evaluated
the usability of IS on a diverse set of message-passing protocols, including leader election
protocols like Chang-Roberts, a non-trivial version of two-phase commit where nodes can
abort early, and Paxos. We demonstrate that our proof rule enables sequentializations of all
these protocols with a high degree of automation. Our evaluation shows that IS supports
simple sequential reductions of complex protocols. Furthermore, the proof artifacts needed
to establish the soundness of these reductions are also devised thinking only about a single
fixed interleaving. Exploiting IS and other proof rules already implemented in Civl, we
are able to derive protocol implementations comprising fine-grained, verified event handlers
which are similar to the unverified implementations written by programmers today.

In summary, this paper contributes: (1) a new proof rule called Inductive Sequential-
ization for eliminating concurrency from asynchronous programs, (2) an implementation
of this rule in the Civl verifier, and (3) a demonstration of its usefulness on a variety of
challenging examples.

5.2 Overview

In this section we provide an overview of inductive sequentialization (IS). We motivate
the challenges of deductive verification of asynchronous programs on a running example
and then illustrate the concepts of IS on this example.

5.2.1 Motivation

Verification of concurrent programs. We present our verification technique in a
general framework based on (gated) atomic actions over shared state and asynchronous
thread creation, which abstracts away the details of any particular programming system
irrelevant to our development. We will illustrate these concepts and our contribution on
an example.

Figure 5.1-① shows a simple broadcast consensus protocol for n nodes (numbered
from 1 to n) to agree on a common value. The local states of the nodes are represented
using arrays, i.e., value[i] holds the input value of node i and decision[i] stores the
final decision of node i. For each node i there are two concurrent threads created by



74

1 proc main: ①
2 for i in 1..n:
3 async broadcast(i)
4 async collect(i)

5 proc broadcast(i):
6 for j in 1..n:
7 send value[i] CH[j]

8 proc collect(i):
9 decision[i] := -∞

10 for j in 1..n:
11 v := receive CH[i]
12 if v > decision[i]:
13 decision[i] := v

14 action Main: ②
15 // atomically create 2n new threads
16 for i in 1..n:
17 async Broadcast(i)
18 async Collect(i)

19 action Broadcast(i):
20 // atomically send value[i] to all nodes j
21 for j in 1..n:
22 send value[i] CH[j]

23 action Collect(i):
24 // atomically receive n values and compute max.
25 vs := receive(n) CH[i]
26 decision[i] := max(vs)

27 action Main’: ③
28 for i in 1..n:
29 call Broadcast(i)
30 for i in 1..n:
31 call Collect(i)

32 action CollectAbs(i): ④
33 assert ∀j. Broadcast(j) ̸∈ Ω
34 assert |CH[i]| ≥ n
35 call Collect(i)

36 action Inv: ⑤
37 assume 0 ≤ k ≤ n
38 assume 0 ≤ l ≤ n

39 for i in 1..k:
40 call Broadcast(i)
41 for i in k+1..n:
42 async Broadcast(i)

43 if k ̸= n:
44 l := 0

45 for i in 1..l:
46 call Collect(i)
47 for i in l+1..n:
48 async Collect(i)

Figure 5.1: Broadcast consensus protocol. ① Original program. ② Program after reduction
to atomic actions. ③ Sequentialization. ④ Abstraction of Collect action. ⑤ Partial
sequentialization.

the asynchronous calls in procedure main: one thread executes procedure broadcast(i)
which sends the value of node i to every other node j, and the other thread executes
procedure collect(i) which receives n values and stores the maximum as its decision. We
consider the channels CH[i] for exchanging messages to be multisets (or bags) which models
a network where messages can be delayed and delivered out-of-order, and the receive
statement is blocking. Since every node receives the values of all other nodes, it is the
case that, after the protocol finishes, all nodes must have decided on the same value, i.e.,

∀i, j ∈ [1, n]. decision[i] = decision[j], (5.1)

where [1, n] denotes the set of integers from 1 to n. However, proving this property directly
on the code in Figure 5.1-① is notoriously complicated, i.e., requires an inductive invariant
that is disproportionally complicated given the simplicity of the protocol. The challenge is
that the send and receive operations across all nodes can execute in many different orders.
An inductive invariant has to capture all of these orders, and represent every possible
intermediate state that can occur. In (5.2) below we show that, even after reduction, the
required inductive invariant remains complicated. This is in contrast to the following
intuitive reasoning a programmer would employ to understand the correctness of the
protocol:

“First, all nodes send their values to each other (the order does not matter),
and then, consequently, every node receives the same set of n values to compute
the maximum (the order does not matter).”



75

Our proof rule is designed to facilitate this kind of reasoning about only a representative
set of execution orders. In particular, we enable the programmer to think and reason
about the program sequentially. To justify that we can focus the reasoning task on certain
sequential execution orders and ignore all other concurrent execution orders, we build on
the theory of mover types and reduction [80, 41, 56].

Atomic actions, mover types, and reduction. An execution of the program in
Figure 5.1-① is naturally understood as an interleaving of small atomic (i.e., uninterruptible)
actions of different threads. For instance, reading or writing a variable, sending a message,
and spawning a new thread are all examples of fine-grained atomic actions. However,
atomic actions are equally well suited to specify coarser-grained operations, and then the
verification task can be understood as the sound summarization of fine-grained concurrent
executions by large atomic actions. Concretely, we consider atomic actions of the form
(ρ, τ), where ρ is a set of states (or one-state predicate), called gate, that specifies the states
from which the action does not fail (like an assertion), and τ is a transition relation (or
two-state predicate) that specifies the possible state transitions when the action executes
(possibly including newly created threads). Note that the separation of ρ and τ is important
to distinguish failure from blocking.

To formalize the idea that the execution order of atomic actions sometimes does not
matter, we assign a mover type [47] to every atomic action in a program. An atomic action
is a left (right) mover if it can be commuted to the left (right) of every other atomic action
executed by a different thread, without altering the outcome of the execution. For example,
over bag channels as in Figure 5.1-①, where messages can be received in an arbitrary order,
receive is a right mover and send is a left mover. Furthermore, asynchronous calls (i.e.,
just the action of creating a new thread) are left movers, and local variable accesses like
reading value[i] and writing decision[i] are both left and right movers (because no two
concurrent threads access them at the same index i). Note that commutativity is checked
pairwise among the pool of actions in a given program, only using the action definitions
without considering reachable program executions. Thus an action can be a mover in one
program, but not in another.

Given the mover types of the atomic actions in a program, consider a thread that,
according to the static program order, executes a sequence of atomic actions with the
following mover types: first a sequence of zero or more right movers, then at most one
non-mover, and finally a sequence of zero or more left movers. We call such a sequence
atomic, because any execution where these actions are interleaved with actions from
other threads can be permuted into an equivalent execution where the atomic sequence is
uninterrupted by other threads. Following this argument, the reduction method lets us
summarize atomic sequences into bigger atomic actions. Figure 5.1-② shows the result
of applying reduction to Figure 5.1-①, where all three procedures are atomic; main is a
sequence of left-moving asynchronous calls, broadcast is a sequence of left-moving sends
and both-moving reads of value[i], and collect is a sequence of right-moving receives
and both-moving reads and writes of decision[i].

Here we want to stress two important points. First, we conveniently represent atomic
actions as code blocks. While this makes, e.g., the action Broadcast(i) (Figure 5.1-②)
visually appear the same as the procedure broadcast(i) (Figure 5.1-①), it represents
an atomic broadcast of value[i] to all other nodes in one single step. Second, atomic
actions can create new concurrent threads, represented as asynchronous calls. For example,



76

executing action Main (Figure 5.1-②) has the effect of atomically creating 2n new threads
(n Broadcast’s and n Collect’s), without yet executing any of their steps. We call these
new threads pending asyncs (PAs), since their future effect is not summarized into the
parent action. Formally, a PA is an action name together with parameter values, and we
denote a set of pending asyncs with the variable Ω.

For the presentation in this paper we assume that programs are given as a set of atomic
actions with PAs. In practice, this means that reduction is typically applied before our
new technique, e.g., using the framework of layered concurrent programs [70]. In theory,
this assumption is without loss of generality, since a non-atomic sequence of actions A;B
can be represented with A having a PA to its continuation B.

Atomic actions are no silver bullet. Reducing a program to atomic actions with
PAs is no panacea for the deductive verification of concurrent programs. In general, PAs
still cause many different concurrent execution orders, and an inductive invariant has to
capture all of them. For example, consider the inductive invariant for Figure 5.1-②:(

Ω = {Main} ∧ (∀i ∈ [1, n]. CH[i] = ∅)
)

∨
(
∃D ⊆ [1, n]. (∀i ∈ [1, n]. CH[i] = {value[j] | j ∈ D}) ∧

Ω = {Broadcast(i) | i ∈ [1, n] \D} ⊎ {Collect(i) | i ∈ [1, n]}
)

∨
(
∃D ⊆ [1, n]. (∀i ∈ [1, n] \D. CH[i] = {value[j] | j ∈ [1, n]} ∧

(∀i ∈ D. decision[i] = max{value[j] | j ∈ [1, n]}) ∧
Ω = {Collect(i) | i ∈ [1, n] \D}

)
(5.2)

The first disjunct captures the initial state with a single PA to Main and all channels
empty, the second disjunct captures the intermediate states where any subset of nodes
D performed their Broadcast and the remaining Broadcast’s and all Collect’s are
still pending, and the third disjunct captures the intermediate states where any subset
of nodes D performed their Collect. Setting D = [1, n] in the third disjunct implies
the correctness property (5.1) and that no PAs are left (i.e., Ω = ∅). Note that in this
example the Collect’s happen after the Broadcast’s, because the Collect’s block until
there are n messages in their corresponding channel. However, there are still two sources
of complexity in reasoning with invariant (5.2) that our new method addresses. First, the
ordering of Broadcast’s before Collect’s is not made explicit in the invariant; to show
the inductiveness of (5.2) we have to prove that in a state with remaining Broadcast’s
(i.e., satisfying the second disjunct) the Collect’s are blocked. Second, the execution
order among the Broadcast’s and among the Collect’s does not matter, and thus we
only want to reason about the “sequential” execution of Broadcast’s happening in order
from 1 to n, and similarly for Collect’s.

5.2.2 Inductive Sequentialization

In this paper we provide an approach to enable sequential reasoning about asynchronous
concurrent programs in the form of a program-transforming (refinement) proof rule called
inductive sequentialization (IS). A first idea of IS is to exploit mover types to eliminate
PAs from atomic actions. By that we mean instead of an action creating a PA that takes
effect asynchronously at a later time, we establish conditions that let us reason about the
PA taking effect immediately, and thus combine it with the calling action. In particular,



77

this is the case if the PA is a left mover, because then it can be moved earlier in an
execution, to immediately follow its caller. However, atomic actions can generally create
unboundedly many PAs, and the elimination of one PA can also introduce new ones if the
eliminated PA has PAs itself. Our solution with IS to eliminate unboundedly many PAs
at once is an induction scheme that has to address the following challenges:

C1 How to express intermediate results during the elimination of unboundedly many
PAs?

C2 How to control the order of eliminating PAs to enable sequential reasoning?

C3 How to eliminate PAs that are not left movers?

We illustrate these challenges and how they are solved by IS on the consensus protocol in
Figure 5.1-②. In particular, we show how an application of IS derives that the consensus
protocol is a sound refinement of the sequential program Main’ in Figure 5.1-③. Main’
represents a very simple schedule of the consensus protocol where all Broadcast’s are
executed before all Collect’s, and in a round-robin fashion.

Challenge C1 is addressed by an invariant action, namely Inv in Figure 5.1-⑤. It
represents (summarizes) the intermediate results during the induction, i.e., all prefixes of
the schedule defining Main’. Therefore, either only some pending Broadcast’s are already
eliminated and the rest of the PAs are still pending (when k < n), or all Broadcast’s and
some number of Collect’s are already eliminated (when k = n). Note that the number
of Broadcast’s or Collect’s that are summarized by Inv is chosen nondeterministically.
This allows Inv to summarize all prefixes of the schedule defining Main’, one prefix
for every choice of k and l. While we believe that the code of Inv is quite simple to
understand, this is of course not the only way to represent prefixes of Main’. In general,
IS is not sensitive to a particular representation.

Customary for an induction, IS has a base case and an induction step. The base case
of IS, i.e., that the effect of Main is captured by Inv, is satisfied with k = 0. For the
induction step, i.e., that the elimination of a Broadcast or Collect PA from Inv is
still captured by Inv, we want to proceed with our sequential intuition and thus have to
address challenge C2.

Every Broadcast PA created by a transition of Inv is a left mover, and thus any
one of them could be eliminated next. However, the natural choice is to eliminate
Broadcast(k + 1). For Inv this is also the only way to satisfy the induction step, by
advancing from k to k+1. To communicate this choice to IS, the proof rule is parameterized
with a choice function that selects the next PA to eliminate from any state with PAs left
to eliminate. The choice function for our example always selects the Broadcast(i) PA
with the smallest parameter i, as long as there exists one, and otherwise it selects the
Collect(i) PA with the smallest parameter i.

The Collect actions are, however, not left movers, manifesting challenge C3. First,
receives do not commute to the left of sends, and second, left movers also have to satisfy a
non-blocking condition, namely that it is always possible to execute the action (from any
state that satisfies its gate). A Collect action blocks in every state that has less than n
messages to receive. The solution provided by IS is that abstractions for the atomic actions
to be eliminated can be provided, which are used both for establishing left-moverness and
to eliminate the PA selected by the choice function in the induction step. Note that there



78

always exists a trivial abstraction that satisfies the mover conditions. Given an inductive
safety invariant I, e.g., the one in Equation 5.2, every action can be abstracted to an
arbitrary step between two states satisfying the invariant (i.e., an action defined by ρ = I
and τ = I ∧ I ′, where I ′ uses primed variables to represent the end state of a transition),
which commutes with itself. This abstraction is of course not useful, since our goal is to
avoid reasoning about this invariant in the first place.

We abstract Collect to CollectAbs given in Figure 5.1-④, which strengthens the
gate (represented as assertion) from ρCollect = true to ρCollectAbs = ∀j. Broadcast(j) ̸∈
Ω ∧ |CH[i]| ≥ n. This assertion represents a condition which holds in the schedule defining
Main’, i.e., there are no concurrent Broadcast’s when a Collect action is spawned
and the channel accessed by the Collect already contains n messages. This makes
CollectAbs non-blocking and a left mover. Thus IS is applicable and we show how
CollectAbs is used in the induction step.

Assume that some prefix of Collect’s from 1 to l are already eliminated, and
Collect(l + 1) should be eliminated next (as indicated by the choice function). This
is where the supplied abstraction comes in; instead of Collect(l + 1) we perform the
induction step with CollectAbs(l + 1). In particular, this means that we need to show
that after the transition of Inv it holds that Ω contains no Broadcast’s and |CH[l+1]| ≥ n.
Observe that this is an entirely sequential verification condition, which holds because all
Broadcast’s happen before the Collect’s in Inv. There are two important points to note
about abstractions supplied to IS. First, these abstractions are merely proof artifacts used
during IS. They are neither introduced into the program before nor left in the program
after IS. Second, an abstraction is always only used for the single PA selected by the choice
function. In particular, in Inv (Figure 5.1-⑤), CollectAbs is neither used for the already
sequentialized Collect’s (line 46) nor for the remaining PAs after l + 1 (line 48). While
in this example the gate of CollectAbs also holds there, this is not the case in general
(see Section 5.4). Thus abstraction during IS is more powerful than abstraction before
applying IS.

Finally, similar to a sequential loop invariant, which allows us to fast-forward through
all iterations of a loop, the invariant action in IS allows us to fast-forward through all
eliminations of PAs. For Inv (Figure 5.1-⑤) this means that we want to fast-forward to the
point where all Broadcast’s and Collect’s have been eliminated. This is the case when
k = l = n, and thus the result obtained by IS is the atomic action Main’ in Figure 5.1-③.
The formal guarantee of IS is that Main (Figure 5.1-②) refines Main’ (Figure 5.1-③).
Hence, we can replace reasoning about Main with reasoning about Main’. This action
captures exactly how we imagined the broadcast consensus protocol to execute sequentially,
and IS guarantees that this is a sound summary of all concurrent executions. Now we can
prove property (5.1) using simple sequential reasoning, i.e., using sequential loop invariants
for a particular execution order, as opposed to the complicated flat inductive invariant
(5.2). Note also that the proof artifacts required to apply IS, i.e., the invariant action Inv
and the abstraction CollectAbs, were themselves devised from this particular execution
order only.

5.3 Preliminaries

In this section we provide the necessary definitions to formalize IS in the next section.



79

Variables and stores. Let Var be a set of variables partitioned into global variables
GVar and local variables LVar . A store is a mapping σ : Var → Val that assigns a value
from a domain Val to every variable. Similarly, g : GVar → Val is a global store and
ℓ : LVar → Val is a local store. Let g·ℓ denote the combination of g and ℓ into a store.

Actions and programs. Let A be a set of action names (usually denoted by uppercase
letters like A in this paper). A pending async (PA) is a pair (ℓ, A) of a local store ℓ and
an action name A (ℓ holds parameter values for A). A gated atomic action, or action for
short, is a pair (ρ, τ), where the gate ρ is a set of stores and the transition relation τ is
a set of transitions (σ, g,Ω) where σ is a (combined global and local) store, g is a global
store, and Ω is a finite multiset of pending asyncs. A program is a finite mapping from
action names to actions. Every program P must contain the dedicated action name Main,
i.e., Main ∈ dom(P), and every action name that appears in P must be mapped to an
action. For a set of action names E and a transition t = (σ, g,Ω) we define PAE(t) to be
the set of PAs to E in Ω, i.e., PAE(t) = {(ℓ, A) ∈ Ω | A ∈ E}. To simplify the notation we
will identify a PA (ℓ, A) with the singleton multiset {(ℓ, A)}, and thus write (ℓ, A) ⊎ Ω
for adding (ℓ, A) to Ω. We write P[A ↦→ a] to denote the program P ′ that is equal to P
except that P ′(A) = a.

Executions. A configuration is a pair (g,Ω) of a global store g and a finite multiset of
pending asyncs Ω,1 or a unique failure configuration  . We define the transition relation
P−→ (omitting P when it is understood from the context) as

g·ℓ ∈ ρ (g·ℓ, g′,Ω′) ∈ τ

(g, (ℓ, A) ⊎ Ω) −→ (g′,Ω ⊎ Ω′)

g·ℓ ̸∈ ρ

(g, (ℓ, A) ⊎ Ω) −→  

where P(A) = (ρ, τ). In a configuration (g,Ω), any PA (ℓ, A) ∈ Ω can be scheduled to
execute next; if the gate of A does not hold (i.e., g ·ℓ ̸∈ ρ) then the program “fails”,
otherwise a transition (g·ℓ, g′,Ω′) ∈ τ atomically updates the global store to g′ and creates
new PAs Ω′ (that are added to Ω). Underlining optionally denotes the PA that is executed
in a transition. An execution π is a sequence of configurations c0 −→ c1 −→ · · · . We call an
execution initialized if it starts in a configuration (g, (ℓ, Main)) with a single PA to Main,
terminating if it ends in a configuration (g,∅) with no PAs, and failing if it ends in the
failure configuration  .

Refinement. We define the notion of refinement between both actions and programs [56].
Let ◦ denote the relation composition operator (sets are unary relations). In particular,
ρ ◦ τ = {(σ, g,Ω) ∈ τ | σ ∈ ρ} denotes the subset of transitions in τ that start from a store
σ ∈ ρ.

Definition 1. An action a1 = (ρ1, τ1) refines an action a2 = (ρ2, τ2), denoted a1 ≼ a2, if
(1) ρ2 ⊆ ρ1 and (2) ρ2 ◦ τ1 ⊆ τ2. We also say that a2 abstracts a1.

The first condition states that a2 has to preserve the failures of a1. The second
condition states that a2 has to preserve the transitions of a1 for initial stores from which

1In our formalization we use multisets of PAs both “statically” in the definition of actions, and
“dynamically” in configurations.



80

a2 cannot fail. Thus, a2 can fail more often than a1. For programs we are interested in the
preservation of failing and terminating behaviors of initialized executions. Let Good(P)
be the set of initial stores from which P cannot fail, and Trans(P) the relation between
initial and final stores of terminating executions:

Good(P) =
{
g·ℓ | ¬

(
g, (ℓ, Main)

) P−→∗  
}
;

Trans(P) =
{
(g·ℓ, g′) |

(
g, (ℓ, Main)

) P−→∗ (g′,∅)
}
.

Definition 2. A program P1 refines a program P2, denoted P1 ≼ P2, if (1) Good(P2) ⊆
Good(P1) and (2) Good(P2) ◦ Trans(P1) ⊆ Trans(P2). We also say that P2 abstracts P1.

Intuitively, this notion of refinement establishes a relationship between the summaries
(input-output relations) of P1 and P2. If the programs contain no assertions (i.e., Good(P1)
and Good(P2) contain all possible stores), it requires that the summary of the “concrete”
program P1 is included in the summary of the “abstract” program P2. When assertions
are present, it requires that P2 fails more often (condition 1) and that the summary of
P1, restricted to initial states where P2 does not fail, is included in the summary of P2

(condition 2). This is sound in the sense that if P2 does not fail, then (1) P1 does not fail
as well, and (2) any property of terminating states of P2 is also valid for the terminating
states of P1.

Proposition 1. If a ≼ a′, then P [A ↦→ a] ≼ P [A ↦→ a′].

Left movers. An action l = (ρl, τl) is a left mover w.r.t. an action x = (ρx, τx) if

1. the gate of l is forward-preserved by x, i.e., if ρl remains true after executing x
whenever it was true before,

g·ℓl ∈ ρl ∧ (g·ℓx, g′,Ω) ∈ ρx ◦ τx =⇒ g′·ℓl ∈ ρl;

2. the gate of x is backward-preserved by l, i.e., if ρx is true before executing l whenever
it is true afterwards,

(g·ℓl, g′,Ω) ∈ ρl ◦ τl ∧ g′·ℓx ∈ ρx =⇒ g·ℓx ∈ ρx;

3. l commutes to the left of x, i.e., if executing x before l leads to a global store that is
also possible when executing l before x,

g·ℓl ∈ ρl ∧ (g·ℓx, ḡ,Ωx) ∈ τx ◦ ρx ∧ (ḡ·ℓl, g′,Ωl) ∈ τl

=⇒ ∃ĝ. (g·ℓl, ĝ,Ωl) ∈ τl ∧ (ĝ·ℓx, g′,Ωx) ∈ τx;

4. l is non-blocking, i.e., if it contains a transition (σ, g,Ω) ∈ τl from any store σ
satisfying the gate ρl.

Furthermore, l is a left mover w.r.t. a program P , denoted by LeftMover(l,P), if it is
a left mover w.r.t. every action in P .



81

5.4 Inductive Sequentialization

In this section we present the inductive sequentialization (IS) proof rule. The context
of IS is a program P, an action name M , and a set of action names E . The goal of
IS is to eliminate all PAs to E from M , i.e., to summarize M together with the future
effects of the PAs to E it creates. In particular, the IS proof rule replaces M with a new
action that contains no PAs to E . Formally, P is transformed into a program P ′ that is
equal to P , except that the action name M is re-mapped to a new action (ρM ′ , τM ′), i.e.,
P ′ = P [M ↦→ (ρM ′ , τM ′)]. Notice that in general, M does not have to be the Main action
of P .

The correctness requirement for IS is that P refines P ′, which means that P ′ has to
preserve both failing and terminating behaviors of P (see Definition 2). In particular,
every terminating state of P must also be reachable by P ′:

(g, (ℓ, Main))
P−→∗ (g′,∅) =⇒ (g, (ℓ, Main))

P ′
−→∗ (g′,∅).

The natural strategy to prove this property is to show that every terminating P-execution
π can be rewritten into a terminating P ′-execution π′ with the same final state, by turning
every transition of M in π into a transition of M ′ in π′. We illustrate this process in
Figure 5.2, where ① shows the final part of a P-execution. First M executes from a
configuration with two other PAs to X and Y , which creates two new PAs to A and B,
and then X,B, Y,A execute to reach a terminating configuration. Suppose E = {A,B},
and thus our goal is to obtain the execution in ⑥ which executes M ′ instead of M , which
does not create PAs to A and B. We do so by setting up an induction that stepwise
eliminates A and B from the execution in ①. The central artifact for this induction is
an invariant action I that has to be provided as input to IS. Then the first step in ②,
constituting the base case of the induction, is to execute I instead of M , which requires
that every transition of M is also a transition of I (or more precisely, that M refines
I). At this point the transition of I denotes an “empty sequentialization” which we are
going to extend in the next steps to “partial sequentializations”, until we obtain the
“complete sequentialization” M ′. In doing so we control the constructed sequentialization
through a choice function that determines for every partial sequentialization a single PA
to sequentialize next. Concretely, in ② we first want to sequentialize A and then B, and
thus the choice function selects A in the transition of I (marked with a box around A). We
commute A to the left of Y , B, and X to obtain ③, which requires that A is a left mover
w.r.t. the actions in P . Then the induction condition of IS guarantees that the composition
of I and A is possible as a single transition of I (corresponding to an extended partial
sequentialization), and thus we obtain ④. Crucially, the transition of I in ③ only has to
be inductive w.r.t A. Now we proceed similarly with the PA to B—commute B to the left
of X and absorb it into I—to obtain ⑤. However, it might be the case that B is not an
unconditional left mover. Therefore it is possible to supply abstractions for actions in E
to IS, like B∗ for B in ④. These abstractions can take into account the context in which
they are sequentialized, e.g., B∗ can rely on the fact that A already executed. Finally, in
⑥ we replace I with M ′, which is constructed from I by removing every transition that
has PAs to E , and thus obtain the desired P ′-execution.

We remark that in general, IS sequentializes not only the PAs created directly by M ,
but also transitively created PAs. This capability is essential to sequentialize unbounded
sequences of PAs. Furthermore, M ′ can still have PAs to actions disjoint from E . Then IS



82

① X Y
M

X Y
A B

Y
A B

Y
A A

M X B Y A

② X Y
M

X Y
A B

Y
A B

Y
A A

I X B Y A

③ X Y
M

X Y
A B

X Y
B

Y
B Y

I A X B Y

④ X Y
M

X Y
B

Y
B Y

I X B∗ Y

⑤ X Y
M

X Y Y
I X Y

⑥ X Y
M

X Y Y
M ′ X Y

Figure 5.2: Illustration of the induction argument. Clouds represent the set of PAs in a
configuration (stores are not shown) and the arrow labels indicate the actions that execute
in the transitions from one configuration to the next.

can be applied to M ′ again, and in Section 5.5.3 we show that iterated application of IS
can be beneficial in practice.

Inductive sequentialization. The formal definition of the IS proof rule is given in
Figure 5.3. Besides the program P , action nameM , and set of action names E which frame
the rule, an invariant action (ρI , τI), a choice function f , an abstraction function α, and a
well-founded order over configurations ≫ have to be provided. The choice function f selects
from every transition t of the invariant action that creates PAs to E (i.e., PAE(t) ̸= ∅) one
of these PAs. The abstraction function α is such that α(A) is an abstraction of P(A) for
every A ∈ E . Note that we can set α(A) = P(A) for every A that should not be abstracted.
The induction argument outlined above is enabled by three induction conditions. To start
the induction (cf. Figure 5.2, ①-②), condition (I1) requires the invariant action to be an
abstraction of the action we rewrite. To end the induction (cf. Figure 5.2, ⑤-⑥), condition
(I2) requires M to be re-mapped to an action that abstracts the invariant action with
all transitions that contain PAs to E removed. To absorb a PA into the invariant action
(cf. Figure 5.2, ③-④), condition (I3) is two-fold, corresponding to the failure and behavior
preservation requirement. First, after every transition t of the invariant action, if A is the
PA selected by the choice function and A∗ the abstraction of A, then the gate of A∗ has to
be satisfied. In other words, any potential failure of A∗ has to be propagated into the gate
of I. Second, when t is composed with a transition of A∗, then the resulting composite
transition must be contained in I and thus possible in a single step. To commute the
actions in E to the appropriate position in the sequentialization (cf. Figure 5.2, ②-③), the
left-mover condition (LM) requires that every abstracted action α(A) is a left mover w.r.t.
the original actions in the program P. Thus, abstracted actions do not have to be left
movers w.r.t. each other, which is evident in Figure 5.2 where at most one abstraction
at a time is part of the execution. Finally, the cooperation condition (CO) strengthens
the standard non-blocking conditions of left movers. It states that is must be possible to
execute every abstracted action such that the configuration decreases in some well-founded
order ≫. (Recall that ≫ is well-founded, if there is no infinite sequence c0, c1, c2, . . . of
configurations such that ci ≫ ci+1 for every n ∈ N.) This ensures that it is always possible



83

Given: P ,M, E To invent: ρI , τI , f , α,≫
P(M) = (ρM , τM) E ⊆ dom(P) WellFounded(≫)

dom(f) = {t ∈ τI | PAE(t) ̸= ∅} t ∈ dom(f) =⇒ f(t) ∈ PAE(t)

dom(α) = E A ∈ E =⇒ P(A) ≼ α(A)

(I1) (ρM , τM) ≼ (ρI , τI) (I2) (ρI , {t ∈ τI | PAE(t) = ∅}) ≼ (ρM ′ , τM ′)

(I3) t = (σ, g, (ℓ, A) ⊎ Ω) ∈ ρI ◦ τI ∧ f(t) = (ℓ, A) ∧ α(A) = (ρA∗ , τA∗) =⇒
g·ℓ ∈ ρA∗ ∧

(
(g·ℓ, g′,Ω′) ∈ τA∗ =⇒ (σ, g′,Ω ⊎ Ω′) ∈ τI

)
(LM) A ∈ E =⇒ LeftMover(α(A),P)

(CO) A ∈ E ∧ α(A) = (ρA∗ , τA∗) ∧ g·ℓ ∈ ρA∗ =⇒
∃g′,Ω′. (g·ℓ, g′,Ω′) ∈ τA∗ ∧ (g, (ℓ, A) ⊎ Ω) ≫ (g′,Ω ⊎ Ω′)

P ≼ P [M ↦→ (ρM ′ , τM ′)]

Figure 5.3: Inductive sequentialization (IS) proof rule.

for the PA elimination process to eventually finish, instead of indefinitely introducing new
PAs to be eliminated. While the cooperation condition might seem exotic, its sole purpose
is the prevention of unsound IS on pathological corner cases, and the condition is easy to
satisfy in practice (see below).

Example 2. Recall the broadcast consensus protocol from Figure 5.1. We formally apply
IS to transform Main to Main’ by eliminating all PAs to Broadcast and Collect. Thus
we set M = Main, E = {Broadcast, Collect}, M ′ = Main’, and I = Inv. Recall that
Inv represents all partial sequentializations where Broadcast’s execute in the fixed order
from 1 to n, followed by the Collect’s executing in the fixed order from 1 to n. Thus
(I1) Main is summarized by Inv (for k = l = 0) and (I2) Main’ summarizes the only
execution of Inv without remaining PAs (for k = l = n). We define the choice function f
such that it either selects the Broadcast PA with the smallest parameter if one exists, or
otherwise the Collect PA with the smallest parameter. Broadcast is a left mover w.r.t.
{Main, Broadcast, Collect} and does not need to be abstracted. However, Collect is
not a left mover because it does not commute with Broadcast and it also does not satisfy
the non-blocking condition. Thus we supply the abstraction α(Collect) = CollectAbs
that strengthens the gate to assert that there are no Broadcast’s left and at least n
messages to receive, which makes CollectAbs a left mover. Now the induction condition
(I3) requires us to discharge the gate of CollectAbs in a sequential context when we
compose it with Inv. This is possible since Inv executes all Broadcast’s before any
Collect. We set ≫ such that c ≫ c′ if and only if c has more PAs than c′. Then ≫ is
clearly well-founded because the number of PAs cannot be negative, and the cooperation
condition (CO) is satisfied because the execution of Broadcast/Collect decreases the
number of PAs (since they do not create new PAs).

Cooperation is necessary. We illustrate the need for the cooperation condition on
the following program.

1 action Main: action Rec: action Fail:
2 async Rec async Rec assert false
3 async Fail



84

This program can fail in two steps by executing Main followed by Fail. Suppose we want
to apply IS with M = Main, E = {Rec}, and I = Main, which satisfies all conditions
except cooperation. In particular, notice that Fail is not in E and thus the induction
condition does not apply to it. But then M ′ is constructed from I by removing all
transitions from Main that have PAs to Rec, which means all transitions. Thus, the
transition relation of M ′ is empty, i.e., τM ′ = ∅ (which we can also represent as assume
false). Then replacing M with M ′ would result in a program that cannot fail, which is
unsound according to the definition of refinement. The cooperation condition prevents the
application of IS because the execution of Rec in any configuration results in exactly the
same configuration, and thus it is impossible to decrease in any well-founded order.

Checking cooperation is easy. The cooperation condition in Figure 5.3 is global in
the sense that it requires a decrease (g, (ℓ, A) ⊎ Ω) ≫ (g′,Ω ⊎ Ω′) for any possible Ω. This
is the most general condition needed in our soundness proof, but in practice we did not
find it necessary for ≫ to depend on Ω. Instead it is natural for ≫ to be monotonic,
i.e., that (g,Ω) ≫ (g′,Ω′) implies (g,Ω ⊎ Ω′′) ≫ (g′,Ω′ ⊎ Ω′′). Then cooperation can be
checked locally by showing (g, (ℓ, A)) ≫ (g′,Ω′). Furthermore, we found the following
simple generic pattern to apply to all of our examples in Section 5.5. Devise a map g from
configurations c to tuples (x1, . . . , xn), such that every xi is either the number of messages
in a certain channel, or the number of PAs of a certain action. Then define c≫ c′ if and
only if g(c) > g(c′), where > denotes the lexicographic order of tuples of natural numbers.
This construction guarantees that ≫ is well-founded and monotonic, and the cooperation
condition is easy to check syntactically.

5.4.1 Soundness Proof

In this section, let P ≼ P ′ be derived by an application of IS.

Lemma 3. For every failing P-execution π starting with a transition of M there exists a
failing P ′-execution π′ starting from the same configuration with a transition of M , i.e.,

(g, (ℓ,M) ⊎ Ω)
P−→∗  =⇒ (g, (ℓ,M) ⊎ Ω)

P ′
−→∗  .

Moreover, π′ does not execute more PAs to M than π.

Proof. Let π be a failing P-execution that starts with a transition of M :

π = (g, (ℓ,M) ⊎ Ω) −→ · · · −→  .

We show how to rewrite π into a failing P ′-execution

π′ = (g, (ℓ,M) ⊎ Ω) −→ · · · −→  .

We (conceptually) replace the first transition of M in π with the invariant action I.

Case 1. g·ℓ ̸∈ ρI . Then because ρM ′ ⊆ ρI we obtain

π′ = (g, (ℓ,M) ⊎ Ω) −→  .



85

Case 2. g·ℓ ∈ ρI . Then because of (ρM , τM) ≼ (ρI , τI) we must have

π = (g, (ℓ,M) ⊎ Ω) −→ (g′,Ω ⊎ Ω′) −→ · · · −→  .

Furthermore, some transition t ∈ τI can simulate the first transition in π, and we denote
π′′ the remainder of π after the first transition:

t = (g·ℓ, g′,Ω′) ∈ τI ; π′′ = (g′,Ω ⊎ Ω′) −→ · · · −→  .

We consider the lexicographically ordered measure on π′′ comprising (1) the length of π′′,
ordered by ≥, and (2) the final configuration in π′′ before the failure, ordered by ≫.

Case 2.1. PAE(t) = ∅. Then t ∈ τM ′ and we obtain π′ = π.

Case 2.2. PAE(t) ̸= ∅. Let (ℓ′, A) ∈ Ω′ be the PA selected by the choice function, i.e.,
f(t) = (ℓ′, A). Let A∗ be the abstraction of A. By the induction condition the gate of
A∗, which is stronger than the gate of A, holds at the beginning of π′′ (i.e., g·ℓ′ ∈ ρA∗)
and because of forward preservation it also holds in every later configuration of π′′. In
particular, the execution of (ℓ′, A) cannot be the failing transition.

Case 2.2.1. (ℓ′, A) executes in π′′. We turn this transition of A into on of A∗, which can
simulate the transition of A. Because A∗ is a left mover, we stepwise commute it to the
left in π′′ such that it becomes the first transition. Let t′ be the corresponding transition
in A∗. (Note that some action X that we move A∗ to the left of could now fail and thus
π′′ could be shortened.) By the induction condition t and t′ can be composed into a single
transition t′′ ∈ τI . We are in Case 2 with decreased measure.

Case 2.2.2. (ℓ′, A) does not execute in π′′. We insert a transition of (ℓ′, A∗) into π′′ right
before the failure. Recall that the gate of A∗ is satisfied, and by the cooperation condition
we can execute A∗ such that the final configuration decreases according to ≫. Because
of backward preservation, the original failure is preserved after A∗. We proceed as in
Case 2.2.1 to move A∗ to the left and absorb it into I. Then we are again in Case 2 with
decreased measure.

The above rewriting process obviously does not introduce new transitions of M into
π′.

Lemma 4. For every terminating P-execution π starting with a transition of M there
exists a P ′-execution π′ that starts from the same configuration as π with a transition of
M and either fails or ends in the same configuration as π, i.e.,

(g, (ℓ,M) ⊎ Ω)
P−→∗ (g′,∅) =⇒ (g, (ℓ,M) ⊎ Ω)

P ′
−→∗ c

where c ∈ { , (g′,∅)}. Moreover, π′ does not execute more PAs to M than π.

Proof. We rewrite π into π′ exactly the same way as in the proof of Lemma 3. If no failure
is introduced (which is possible in Case 1 and Case 2.2.1) we are guaranteed to preserve
the final configuration of π (and never reach Case 2.2.2). Otherwise we obtain a failing π′

from Lemma 3.

Theorem 8. The IS proof rule in Figure 5.3 is sound.

Proof. By repeated application of Lemma 3 and Lemma 4 every P-execution π can be
rewritten into a refinement-preserving P ′-execution π′.



86

5.5 Evaluation

In this section, we report on our experience of using IS for the verification of functional
correctness of a diverse set of example programs (see Table 5.1). We argue that IS is
applicable (to realistic programs), automatable (using sequential verifiers), and user-friendly
(by appealing to sequential intuition). Our tool and all examples are publicly available as
part of the Boogie project [2] and long-term archived [69].

5.5.1 Implementation

We implemented IS as an extension of Civl [56], a verification system for concurrent
programs based on automated and modular refinement reasoning. Civl implements the
framework of layered concurrent programs [70] where the input consists of a description of
a sequence of (related) programs P1, · · · ,Pn and the verification goal is to establish the
chain of refinement P1 ≼ · · · ≼ Pn. The justification for every refinement step between
two subsequent programs Pi ≼ Pi+1 is compiled into sequential verification conditions of
the Boogie verifier [14], which are then discharged automatically by an SMT solver. We
seamlessly integrated IS into Civl, such that every refinement step can now either be an
IS transformation or an existing Civl transformation.

Our integration of IS into Civl comprises roughly 2500 lines of C# code, addressing the
following challenges. First, we adapted the type checker to integrate IS into the language
of layered concurrent programs, which avoids extensive repetition of program parts that
do not change in most refinement steps (observed as hindering, e.g., in [26]). Second, we
designed a representation of PAs as multisets in the generalized array theory [36] and
extended the existing refinement checker with the capability to summarize unboundedly
many asynchronous calls as PAs. Third, the actual conditions of IS (Figure 5.3) are
compiled to sequential verification conditions in Boogie. In particular, one sequential
Boogie procedure encodes each of the following checks: (1) M refines I, (2) I is inductive
w.r.t. the abstraction of a chosen PA, (3) I without transitions that create PAs to E
refines M ′, and (4) A refines its abstraction α(A) for A ∈ E . The left-mover conditions
are automatically discharged by the existing mover engine. Due to this fine-grained
decomposition, we can generate targeted error messages for failed checks that are local to
at most two actions.

5.5.2 Verification Methodology

In this section we report on the verification methodology we followed to verify our examples
and specifically illustrate it on our most significant example, Paxos.

Paxos. The Paxos [75] protocol establishes consensus among a set of unreliable nodes
in an asynchronous network without a central coordinator. We consider a single-decree
Paxos variant that establishes consensus on a single value. Conceptually, Paxos operates
in a sequence of (increasingly numbered) rounds, where each round is associated to a
proposer node. The proposers communicate with a set of acceptor nodes to try to either
decide on a newly proposed value or to learn about a previously decided value. Since
the proposers operate concurrently on different rounds, Paxos resolves conflicts using a
mechanism that requires proposers to collect in two subsequent phases “enough” responses



87

1 var acceptorState: Node -> AcceptorState
2 var decision: Round -> Option<Value>
3 var joinChannel: Round -> Bag<JoinResponse>
4 var voteChannel: Round -> Bag<VoteResponse>

5 proc Paxos() proc Conclude(r: Round, v: Value)
6 proc StartRound(r: Round) proc Join(r: Round, n: Node)
7 proc Propose(r: Round) proc Vote(r: Round, n: Node, v: Value)

(a) Concrete implementation

8 datatype VoteInfo(value: Value, nodes: Set<Node>)
9 var joinedNodes: Round -> Set<Node>

10 var voteInfo: Round -> Option<VoteInfo>
11 var pendingAsyncs: Bag<PA>

12 action Propose(r: Round) returns (pending_async PAs: Bag<PA>):
13 var ns: Set<Node>, v: Value

14 assert Propose(r) ∈ pendingAsyncs
15 assert voteInfo[r] = None()

16 if (*):
17 assume ns ⊆ joinedNodes[r] ∧ IsQuorum(ns)
18 ... // compute v from r, ns, and voteInfo
19 voteInfo[r] := Some(VoteInfo(v, ∅))
20 PAs := {Vote(r, n, v) | n: Node} ⊎ {Conclude(r, v)}
21 ...

(b) Atomic actions for applying inductive sequentialization

22 action ProposeAbs(r: Round) returns (pending_async PAs: Bag<PA>):
23 assert {StartRound(r’) ∈ pendingAsyncs | r’ ≤ r} = ∅
24 assert {Join(r’, n’) ∈ pendingAsyncs | r’ ≤ r} = ∅
25 ... // same as Propose

26 action Paxos() seq Paxos’ with PaxosInv
27 elim StartRound, StartRoundAbs elim Propose, ProposeAbs elim ...
28 ...

29 action Paxos’():
30 assert ∀ r. decision[r] = None()
31 havoc decision with ∀ r1, r2, v1, v2.
32 decision[r1] = Some(v1) ∧ decision[r2] = Some(v2) =⇒ v1 = v2

33 action PaxosInv() returns (pending_async PAs: Bag<PA>, choice c: PA)
34 ...

(c) Inductive sequentialization

Figure 5.4: Excerpts from our Paxos proof.

(called quorum) from acceptors, while acceptors stop working on a round when they hear
about a higher round. Thus every round can remain undecided (in general, consensus
cannot be guaranteed in an asynchronous network), but we want to prove that two rounds
never decide on conflicting values.

Implementation. Our examples are implemented as low-level concurrent programs P1

that only use primitive atomic actions, like reading or writing a single memory address,
and sending or receiving a single message. Figure 5.4(a) shows the variable and procedure
declarations of our Paxos implementation. The procedures Propose and Conclude are
associated to the proposer role in the Paxos protocol, while Join and Vote are associated to
the acceptor role. A client calls Paxos, which creates an arbitrary number of asynchronous
StartRound tasks. For each round, the corresponding StartRound task creates one Join
task per acceptor and one Propose task. According to each acceptor’s current state (in
acceptorState), Join sends a JoinResponse message to a channel in joinChannel.



88

Propose executes a loop that receives from this channel and aggregates the response
messages. If a quorum is reached, it proposes a value by creating one Vote task per
acceptor and one Conclude task. Then, the Vote tasks send VoteResponse messages
that are aggregated in a loop by Conclude. If a quorum is reached, Conclude updates
decision for the corresponding round from None() to Some(v) where v is the decided
value.

Atomic actions. IS operates on atomic actions, and thus we first apply an existing
Civl transformation on P1 to obtain suitable atomic actions that summarize the low-level
procedures, forming P2. Crucially, this step does not require any concurrent invariants
related to the correctness of the protocol. However, the subsequently enabled application
of IS significantly simplifies the construction of the actual proof of functional correctness.
Furthermore, we note that the structured proofs obtained by our methodology are not
only—in our experience—simpler to construct, but also more modular and thus better
suited for change than flat inductive invariants. For example, changing low-level details in
the implementation only requires a revision of P1 ≼ P2, but does not affect the rest of the
proof.

For Paxos we also make use of Civl’s capability to change the state representation of
the program. Concretely, we hide the implementation variables acceptorState, join-
Channel, and voteChannel, and instead introduce the abstract variables joinedNodes
and voteInfo shown in Figure 5.4(b). Also, we introduce pendingAsyncs to hold the
current set of pending asyncs. As an example, Figure 5.4(b) shows the action summary
of Propose. Instead of a loop that aggregates messages from a channel, it atomically
initializes voteInfo[r] to VoteInfo(v,∅) if there is a quorum in joinedNodes[r],
where v is the proposed value and ∅ the initially empty set of acceptors that voted on it.
Notice that the action Propose has an additional specially-declared output variable PAs
that represents the PAs created by the action.

Inductive sequentialization. In our experience, the key to apply IS is the intuition of
idealized, sequential executions of the program. The main creative task is the invention of
this sequentialization, while all required proof artifacts are derived from it. In particular,
the invariant action I and the choice function f are determined from partial sequential
executions, M ′ summarizes completed sequential executions, and left-moving abstractions
α can assert to only execute in the sequential context.

The sequentialization idea for Paxos is to execute one round at a time (in increasing
order), and within each round execute actions in a fixed order. In particular, abbreviating
action names with their first letter and denoting round boundaries by a vertical bar, the
sequentialization looks as follows:

S(1) J(1,1) J(1,2) P(1) V(1,1, ) V(1,2, ) C(1, )
⏐⏐ S(2) J(2,1) . . .

To preserve all original behaviors of the protocol, we observed that the effect of rounds being
blocked from reaching a decision due to overlapping proposals or out-of-order message
delivery is equivalent to both acceptors and proposers nondeterministically dropping
incoming messages. For example, notice that the state update in Propose is guarded by a
nondeterministic conditional on line 16 (which is not present in the low-level implementation
P1 but introduced in P2).



89

Our goal is to apply IS to transform Paxos to Paxos’ in Figure 5.4(c). Paxos’ is a
straight-forward high-level specification of Paxos, stating that the protocol consistently
updates decision, i.e., no two rounds decide on conflicting values. A client could be
provided with an API to query decision and would then use Paxos’ to reason about
its own consistency. The application of IS is declared on action Paxos (line 26), which
prescribes the use of invariant action PaxosInv to simultaneously eliminate all other
actions using the left-mover abstractions given in the elim clauses (line 27). For example,
ProposeAbs in Figure 5.4(c) strengthens the gate of Propose with the information that,
in the sequentialization, only Join and StartRound actions with higher round numbers
can still be pending. All our abstractions are of this simple kind. The choice function is
specified by the programmer using a special output variable c of PaxosInv, see line 33.

Our invariant action PaxosInv consists of four parts:

1. Sequentialization: Rounds execute one after another, and within rounds there is a
fixed order of phases.

2. Quorum before decision: If there was a decision for value v, then there must have
been a proposal and a quorum of nodes that voted for v (in the same round).

3. Voting after decision: If there was a decision in round r1 for value v1 and some
higher round r2 votes on value v2, then v2 = v1.

4. Safety : If two rounds reach a decision, then it is on the same value.

Property 1 encodes the sequentialization order and lets us discharge the gates of our
left-mover abstractions. Properties 2/3/4 capture the core mechanism of the protocol and
are quite easy to state.

Invariant complexity. We demonstrate the significant simplifications afforded by IS in
terms of invariant complexity by comparing against the baseline of standard “asynchrony-
aware” inductive invariants (over the original asynchronous program). In particular, we
compare to the well-documented Ivy invariants given in [97], but stress that these invariants
are representative for other systems like [76, 55, 116, 26]. While these works have excellent
contributions elsewhere, the methodology to deal with the protocol complexity boils down
to the above baseline. The only other approaches we know of that focus on improving this
particular aspect are [12, 112, 71, 34], but they do not apply to our example programs
(see Section 5.6).

Properties 2/3/4 above correspond roughly to formulas (4)-(7) in [97]. However, the
Ivy invariant requires five additional conjuncts (8)-(12), which capture more complicated
dependencies of overlapping rounds and are much harder to invent. Due to sequentialization,
we do not need any analogue of these in our invariant.

5.5.3 Other Case Studies

We demonstrate the broad applicability of IS by applying it on the examples listed in
Table 5.1. These examples cover a wide variety of characteristics of concurrent programs,
including modes of concurrency (tightly synchronized, mostly independent, coordination-
focused, phase-oriented, long-running), communication topologies (complete, star, ring,



90

Table 5.1: Examples verified with IS.

Example #IS
#LOC

Total

#LOC

IS

#LOC

Impl

Time

sec

Broadcast consensus 2 396 108 121 1.0
Ping-Pong 1 281 91 106 0.9
Producer-Consumer 1 225 65 93 0.9
N-Buyer 4 681 251 256 2.6
Chang-Roberts 2 377 117 135 1.1
Two-phase commit 4 553 181 222 1.4
Paxos 1 1168 534 302 4.2

pipeline), channel types (bags, queues), and specifications (consensus, unique leader,
assertions). We avoided any hidden simplifications in the communication between processes
(e.g., arranging broadcast-receive communication with a set of nodes sequentially instead of
concurrently), and included realistic performance optimizations which generally complicate
verification.

Column #IS reports the number of IS applications. For some programs we preferred
the repeated application of IS, although the proof could be accomplished by a single
application. This is because an action that is eliminated in one IS application disappears
from the pool of actions w.r.t. which left-moverness has to be established in a subsequent
IS application. For example, as an alternative to the one-shot proof of the broadcast
consensus protocol in Figure 5.1 we performed a proof that first eliminates Broadcast in
one IS application, and then Collect in a second IS application. Then the abstraction
CollectAbs in Figure 5.1-④ does not need the gate on line 33, because CollectAbs does
not have to commute to the left of Broadcast.

The #LOC columns report numbers of Civl lines of code. Civl, as Boogie, is an
intermediate verification language not optimized for conciseness. Our files contain a lot of
boilerplate code that would be part of a library for any frontend language. Concretely, this
includes declarations of builtin SMT types, type declarations for pending asyncs, theory
axioms (e.g., for sets), primitive atomic actions (e.g., send/receive), etc. Thus, besides
(1) the total lines we also report (2) the lines related to IS steps, and (3) the lines related
to the implementation P1 and existing Civl step P1 ≼ P2.

The last column reports the total verification time. Our tool is fast and thus suitable for
interactive development. However, we acknowledge observing run-time fluctuations caused
by small (semantically irrelevant) modifications, likely due to heuristics for quantifier
reasoning. Improving the robustness of checkers for complex verification conditions is an
important avenue for future work.

We finally provide a brief description of the remaining examples besides broadcast
consensus and Paxos.

Ping-Pong. In this example a Ping process sends increasing numbers to a Pong pro-
cess, expecting the number to be acknowledged back. Our sequentialization makes the
alternation of the Ping and Pong process explicit. We verify assertions in the program,
which state that the Pong processes receives increasing numbers, and the Ping process
receives correct acknowledgments.



91

Producer-Consumer. This is a variation of the Ping-Pong example, where a producer
enqueues increasing numbers into a shared queue, and a consumer dequeues numbers from
the queue and verifies that they are indeed increasing. The Producer-Consumer example
has more concurrent executions than the Ping-Pong example, because the producer can be
arbitrarily faster than the consumer, and thus the queue can grow arbitrarily big. However,
IS reduces the program to a sequentialization where the producer and consumer alternate,
and thus the queue contains at most one element.

N-Buyer. In this example n buyer processes coordinate the purchase of an item from
a seller. That is, one buyer requests a quote for the item from the seller, then the
buyers coordinate their individual contribution, and finally if the contributions are enough
to buy the item, and order is placed. This example was adapted from [25] and is
representative for the coordination protocols targeted by session types. We added and
verified a functional correctness specification that states that if a final order is placed
then the sum of contributions promised by the buyers actually adds up to the price of the
ordered item.

Chang-Roberts. This is a leader election protocol in a ring topology [27]. Each node
starts by sending its own (unique) ID to its neighbor in the ring, and then forwards incoming
messages with IDs greater than its own. When a node receives its own ID, it declares itself
as leader. We prove that there can be at most one leader. Our sequentialization follows
from the intuition that only the node with the highest ID, say m, can become a leader,
and for that its ID has to traverse the ring once. We sequentialize the program such that
each node runs to completion, starting with the neighbor of m, then the neighbor of the
neighbor of m, and so on, and finally m.

Two-phase commit (2PC). 2PC is a protocol for collectively deciding on committing
or aborting a transaction. The protocol consists of a coordinator and n participants, and
proceeds in two phases. During the first phase, the coordinator sends vote requests to all
the participants and collects their votes, which can indicate to either commit or abort
the transaction. If all of the participants have voted for committing the transaction, the
coordinator initiates the second phase by sending commit messages to all participants.
Otherwise, it sends an abort message. When the participants receive the decision message
from the coordinator, they finalize the transaction.

We consider an optimized and realistic implementation of the 2PC protocol. First, in
both phases, the coordinator broadcasts a message and then waits to receive responses.
Second, the coordinator can send “early abort” messages. While receiving votes, it can
terminate the first phase and abort the transaction as soon as it receives a negative vote,
without waiting for the remaining votes. Thus some of the participants might receive a
decision message even before seeing a request. Therefore, the last optimization is that
the participants can process request and decision messages concurrently, in contrast to
processing the decision message sequentially after the request message.

We verified that all participants consistently commit or abort a transaction, and that
commit only happens if all participants voted for commit. We established a sequential
reduction of 2PC using 4 applications of IS (each IS application enlarging the sequentialized
prefix until removing asynchrony altogether). The sequential reduction follows the natural
flow of the protocol: broadcasting vote request messages, followed by vote responses from a



92

nondeterministic number of participants, followed by the broadcast of the decision message,
and the finalization of the transaction.

5.6 Related Work

We review works concerning the design of proof systems for reasoning about concurrent or
distributed systems. We focus first on proof systems that include some form of reduction,
i.e., behavior-preserving transformations that reduce the number of interleavings, which
are closer to our work, and subsequently discuss other related works.

Reduction. Lipton’s reduction theory [80] introduced the concept of movers to define a
program transformation that creates atomic blocks of code. QED [41] expanded the scope of
Lipton’s theory by introducing iterated application of reduction and abstraction over gated
atomic actions. CIVL [56] builds upon the foundation of QED, adding invariants [95, 63],
refinement layers [70], and pending asyncs [71]. Inductive sequentialization builds upon this
prior work, introduces a new scheme for reasoning inductively over unbounded concurrent
executions, and thus provides an alternative to the classic approach of inductive invariants.

The work described above takes the general approach of reasoning about concurrent
programs via simplifying program transformations. Recent research projects have ad-
vocated the need to incorporate an increasing set of sound program transformations.
CSPEC [26] takes an approach similar to CIVL but mechanizes all metatheory within
the Coq theorem prover [108] for flexibility and sound extensibility. Armada [81] also has
flexible and mechanized metatheory whose usefulness is demonstrated by implementing a
variety of program transformations, including those catering to fine-grained concurrency
and weak memory models.

Movers have also been used to define an equivalence-preserving transformation that
eliminates buffers in message-passing programs [12, 112]. These works define a restricted
class of programs and prove that reasoning about the set of rendezvous executions of
these programs, where messages are delivered instantaneously, is complete, i.e., any other
execution is equivalent to a rendezvous execution, up to reordering of mover actions. Our
example programs in Section 5.5 fall outside this class, e.g., because of ring topology
(Chang-Roberts), optimizations (2PC, Paxos), or loop-carried state (Ping-Pong). In
general, removing message buffers does not necessarily lead to a sequential program.
Concurrency can still be present due to the different orders in which messages can be
sent or received by different processes. For instance, von Gleissenthall et al. [112] consider
a simpler variation of Paxos where the communication between a proposer p and an
acceptor a1 does not interleave with the communication between p and another acceptor
a2. The reduction to rendezvous communication, which remains a concurrent program,
still contains all the complexity due to acceptors receiving messages from different rounds
in an arbitrary order (which is not present in our sequentialization).

In the context of asynchronous programs, Kragl et al. [71] use left movers to derive
atomic action summaries for procedures with asynchronous calls, i.e., they define a behavior-
preserving transformation where asynchronous calls can be assumed to be synchronous
provided that their body is a left mover. Inductive sequentialization solves the orthogonal
problem of eliminating an unbounded number of PAs from atomic actions using induction.
In particular, the work in [71] does not apply to the examples presented in Section 5.5



93

(their versions of Ping-Pong and two-phase commit do not model explicit communication
through message-passing).

In the context of message-passing programs, Elrad and Francez’s reduction theory [42]
introduced the concept of communication-closed layer, which is a sequence of actions where
every send action is paired with a corresponding receive action. They propose a program
transformation that reduces a given program to a sequence of communication-closed layers.
This simplifies reasoning since the lifetime of a message is limited to a single layer. Damian
et al. [34] provides a concrete instantiation of this theory in the context of fault-tolerant
distributed protocols that relies on common implementation idioms. While the result of
this transformation is not a purely sequential program as in our case, it does provide a
significant reduction in the number of schedules to reason about. Conceptually, our work is
phrased in a more generic setting that does not rely on the specifics of the input program.
The approach of Damian et al. [34] requires low-level annotations about local variables
and messages, and various syntactic constraints on executions. For instance, Damian et
al. [34] cannot deal with Chang-Roberts or our 2PC with ”early-abort” (independently
of the programming model) because of syntactical constraints on the executions (see
Condition V of Definition 2 in that paper). Chang-Roberts is not admitted because the
messages do not encode a notion of time and 2PC is not admitted because the coordinator
interleaves computation steps (taking a decision) with receiving votes. They can also not
deal with the other examples (including our version of Paxos) because they are written
using asynchronous procedure calls (Damian et al. [34] deals with protocols written as the
composition of a number of long-running processes executing sequential code). Concerning
Paxos, Damian et al. [34] considered several optimized variations which we believe are in
the reach of IS as well. Given the limited time, we chose to evaluate IS over a diverse set
of communication patterns and specifications instead of additional Paxos features.

Verification of distributed systems. There are several recent papers on mechanized
verification of distributed systems. IronFleet [55] embeds TLA-style state-machine model-
ing [76] into the Dafny verifier [77] to refine high-level distributed systems specifications
into low-level executable implementations. Ivy [98] organizes the search for an inductive
invariant as a collaborative process between automatic verification attempts and user
guided generalizations of counterexamples to induction in a graphical model. They use
a restricted modeling and specification language that makes their verification conditions
decidable. Padon et al. [97] presents a methodology for (manually) instrumenting program
code which ensures that the verification conditions generated by Ivy fall into the decidable
effectively-propositional fragment of first-order logic. Verdi [116] lets the programmer pro-
vide a specification, implementation, and proof of a distributed system under an idealized
network model. Then the application is automatically transformed into one that handles
faults via verified system transformers. The rely-guarantee rule of Gavran et al. [49] and
the ALS types of Kloos et al. [67] target a weaker form of asynchrony, where a single task
queue atomically executes one task at a time. Unlike our approach, all the above perform
asynchronous reasoning which significantly complicates the invariants. PSync [40] uses a
synchronous model of communication for the purpose of program design and verification,
shifting the complexity of efficient asynchronous execution to a runtime system.

Concurrent separation logic (CSL) [92] was devised for modular reasoning about multi-
threaded shared-memory programs, focusing on the verification of fine-grained concurrent
data structures. CSL adequately addresses the problem of reasoning about low-level
concurrency related to dynamic memory allocation, but still suffers from the complications



94

of a monolithic approach to invariant discovery for protocol-level concurrency. Recently,
CSL has been applied to message-passing programs. The approach in [93] uses CSL to
link implementation steps to atomic actions, and then relies on a model checker to explore
the interleavings of those atomic actions. The work in [104] addresses the composition of
verified protocols using ideas from separation logic. The actor services of [107] focus on
compositional verification of response properties of message-passing programs.

Sequentialization in bounded model checking. Reducing concurrent program veri-
fication to sequential program verification has also been used in the context of bounded
model checking, e.g., [100, 43, 21, 18, 109, 74]. In this case, the reduction encodes the
control nondeterminism due to the interleaving semantics into data nondeterminism, and
assumes a certain bound on interleavings, e.g., a bounded number of context switches [99].
The resulting sequential program still exhibits all the complexity due to interleavings, but
is more amenable to symbolic reasoning using SMT solvers.

5.7 Conclusion

We presented inductive sequentialization, a new induction-based methodology for proving
the correctness of an asynchronous program. This methodology establishes sequential
reductions, which capture all the behaviors of the original program, up to reordering of
commutative actions. The proofs using inductive sequentialization are much simpler than
those relying on standard inductive invariants since they sidestep the problem of reasoning
about arbitrarily many and arbitrarily long interleavings.

IS is a blend of induction, reduction and abstraction, which derives its power from the
tight combination of the three. Its applicability is particularly enhanced in well-designed
asynchronous systems which favor short-living asynchronous tasks in place of long-living
tasks that reduce responsiveness, and where asynchrony is transparent in the sense that
it does not affect the logic of the application. This has been demonstrated through the
verification of a number of implementations of paradigmatic distributed protocols.

In the future we plan to further investigate the potential of IS to simplify the construc-
tion of formal proofs of distributed systems in other application areas, e.g., Byzantine
fault tolerance, and blockchain protocols.

Acknowledgments

This research was supported in part by the Austrian Science Fund (FWF) under grant
Z211-N23 (Wittgenstein Award) and the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation program (grant agreement No
678177).



95

6 Conclusions

This dissertation presented a new framework for the deductive verification of concurrent
programs. We introduced a refinement methodology over structured concurrent programs,
where fine-grained procedures are gradually abstracted to coarser-grained atomic actions.
Proof construction by a human is decomposed into small manageable pieces, and proof
checking by a machine is decomposed into modular verification conditions. We believe
that formally verified implementations can only become practical when programming and
verification are combined into a single activity. Our work facilitates this unification by
representing all layers of abstraction in a multi-layer refinement proof (from low-level
implementations to high-level specifications) in the same uniform formalism, and compactly
expressing all layers and their connection as a single layered concurrent program.

We integrated novel reduction-based program simplifications into our methodology,
which synchronize and sequentialize asynchronous computations, appealing to the intuition
programmers have about simple interleavings of their programs. We applied our reductions
to a number of challenging examples, and demonstrated that even complicated distributed
protocols like Paxos admit inductive sequentialization proofs that are much simpler (to
construct) than existing proofs. A common question asks when exactly our reduction
arguments do or do not apply. In theory, an inductive invariant proof can be turned into an
inductive sequentialization proof. This is not very satisfactory though, since the invention
of complicated inductive invariants is what we wanted to avoid in the first place. The
question should really be, when exactly is inductive sequentialization useful. This question
is very much open, and will only be possible to be answered with further experience.
Clearly, contrived examples where every interleaving produces a different result (e.g., a
set of n threads, all of which concurrently append their unique identifier to a shared list)
are not amenable to a reduction argument. However, the results in this dissertation on a
broad variety of realistic examples and concurrency patterns is encouraging. We hope to
see this trend continue on further examples, and firmly believe that reductions will play a
key role in making formal proofs of concurrent programs mainstream.

While the verification of sophisticated concurrent algorithms and realistic implemen-
tations will certainly remain a challenge, our decomposition and structuring mechanism
enables programmers to face this challenge in a principled way.

We conclude with possible directions for future work.

Verification-condition generation. Civl programs are compiled to sequential veri-
fication conditions in Boogie. There are several choices for doing this compilation, and



96

several choices for splitting or combining different checks. We would like to better under-
stand the tradeoffs between these choices, and if any of them should be exposed to the
programmer. For example, for every Civl procedure, sequential verification (checking pre-
conditions, postconditions, and loop invariants), noninterference checking, and refinement
checking are combined into a single Boogie procedure. Splitting these checks decreases
the size of individual verification conditions, but results in (linear) code duplication. Also,
noninterference checking is performed w.r.t. all invariants across all procedures at once.
Again, splitting these checks would decrease the size of individual verification conditions,
but also result in code duplication (e.g., quadratic duplication to check noninterference of
a procedure w.r.t. only one other procedure at a time).

Automation. Since we rely on automated theorem provers to discharge verification
conditions, it is important to provide the programmer with mechanisms to make progress
in case automated verification fails. In particular, quantified formulas can make proofs
very brittle (i.e., small changes in the input have a large impact on prover performance).
For certain checks, Civl supports the targeted injection of lemmas (to avoid prolific global
quantified axioms) and witnesses (for quantifier instantiation). We would like to have
systematic support for such mechanisms.

Integrated development environment. The language of layered concurrent programs
provides new challenges and opportunities for programming support in an integrated
development environment. For example, displaying a particular program layer, refactoring
support for layers, etc.

Code generation. Although we can verify fine-grained realistic implementations by
starting with a program that only uses primitive atomic operations, we would like to be
able to generate executable binaries from verified Civl programs.

Prophecy variables. We are interested in adding support for prophecy variables to
Civl. While intuitively and theoretically [4] useful, there is almost no support for prophecy
variables in verification tools. Prophecy variables were added to QED to enable backward
reasoning [105]. However, we are not aware of any stable implementation of prophecy
variables in a verifier based on logical verification conditions. Only recently prophecy
variables were added to the separation-logic framework Iris [65].



97

Bibliography

[1] Boogie (release). https://www.nuget.org/packages/Boogie.

[2] Boogie (source code). https://github.com/boogie-org/boogie.

[3] Jepsen. https://jepsen.io/.

[4] Mart́ın Abadi and Leslie Lamport. The existence of refinement mappings. Theor.
Comput. Sci., 82(2), 1991. doi:10.1016/0304-3975(91)90224-P.

[5] Jean-Raymond Abrial. The B-book - assigning programs to meanings. 1996. doi:
10.1017/CBO9780511624162.

[6] Jean-Raymond Abrial, Michael J. Butler, Stefan Hallerstede, Thai Son Hoang,
Farhad Mehta, and Laurent Voisin. Rodin: an open toolset for modelling and
reasoning in Event-B. Int. J. Softw. Tools Technol. Transf., 12(6), 2010. doi:
10.1007/s10009-010-0145-y.

[7] Rajeev Alur and Thomas A. Henzinger. Reactive modules. In LICS, 1996. doi:
10.1109/LICS.1996.561320.

[8] Rajeev Alur, Thomas A. Henzinger, Freddy Y. C. Mang, Shaz Qadeer, Sriram K.
Rajamani, and Serdar Tasiran. MOCHA: modularity in model checking. In CAV,
1998. doi:10.1007/BFb0028774.

[9] Krzysztof R. Apt. Formal justification of a proof system for communicating sequential
processes. J. ACM, 30(1), 1983. doi:10.1145/322358.322372.

[10] Krzysztof R. Apt, Nissim Francez, and Willem P. de Roever. A proof system for
communicating sequential processes. ACM Trans. Program. Lang. Syst., 2(3), 1980.
doi:10.1145/357103.357110.

[11] Ralph-Johan Back and Joakim von Wright. Refinement Calculus - A Systematic
Introduction. Graduate Texts in Computer Science. 1998. doi:10.1007/978-1-
4612-1674-2.

[12] Alexander Bakst, Klaus von Gleissenthall, Rami Gökhan Kici, and Ranjit Jhala.
Verifying distributed programs via canonical sequentialization. In OOPSLA, 2017.
doi:10.1145/3133934.

[13] Thomas Ball and Sriram K. Rajamani. The SLAM project: debugging system
software via static analysis. In POPL, 2002. doi:10.1145/503272.503274.

https://www.nuget.org/packages/Boogie
https://github.com/boogie-org/boogie
https://jepsen.io/
http://dx.doi.org/10.1016/0304-3975(91)90224-P
http://dx.doi.org/10.1017/CBO9780511624162
http://dx.doi.org/10.1017/CBO9780511624162
http://dx.doi.org/10.1007/s10009-010-0145-y
http://dx.doi.org/10.1007/s10009-010-0145-y
http://dx.doi.org/10.1109/LICS.1996.561320
http://dx.doi.org/10.1109/LICS.1996.561320
http://dx.doi.org/10.1007/BFb0028774
http://dx.doi.org/10.1145/322358.322372
http://dx.doi.org/10.1145/357103.357110
http://dx.doi.org/10.1007/978-1-4612-1674-2
http://dx.doi.org/10.1007/978-1-4612-1674-2
http://dx.doi.org/10.1145/3133934
http://dx.doi.org/10.1145/503272.503274


98

[14] Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rus-
tan M. Leino. Boogie: A modular reusable verifier for object-oriented programs. In
FMCO, 2005. doi:10.1007/11804192_17.

[15] Sam Blackshear, Nikos Gorogiannis, Peter W. O’Hearn, and Ilya Sergey. RacerD:
compositional static race detection. In OOPSLA, 2018. doi:10.1145/3276514.

[16] Stefan Blom, Saeed Darabi, Marieke Huisman, and Wytse Oortwijn. The VerCors
tool set: Verification of parallel and concurrent software. In IFM, 2017. doi:
10.1007/978-3-319-66845-1_7.

[17] Ahmed Bouajjani, Egor Derevenetc, and Roland Meyer. Robustness against relaxed
memory models. In Software Engineering, 2014. URL: http://dl.gi.de/handle/
20.500.12116/30973.

[18] Ahmed Bouajjani and Michael Emmi. Bounded phase analysis of message-passing
programs. In TACAS, 2012. doi:10.1007/978-3-642-28756-5_31.

[19] Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Suha Orhun Mutluergil.
Proving linearizability using forward simulations. In CAV, 2017. doi:10.1007/978-
3-319-63390-9_28.

[20] Ahmed Bouajjani, Michael Emmi, Constantin Enea, Burcu Kulahcioglu Ozkan, and
Serdar Tasiran. Verifying robustness of event-driven asynchronous programs against
concurrency. In ESOP, 2017. doi:10.1007/978-3-662-54434-1_7.

[21] Ahmed Bouajjani, Michael Emmi, and Gennaro Parlato. On sequentializing concur-
rent programs. In SAS, 2011. doi:10.1007/978-3-642-23702-7_13.

[22] Ahmed Bouajjani, Constantin Enea, Kailiang Ji, and Shaz Qadeer. On the com-
pleteness of verifying message passing programs under bounded asynchrony. In CAV,
2018. doi:10.1007/978-3-319-96142-2_23.

[23] Ahmed Bouajjani, Constantin Enea, Suha Orhun Mutluergil, and Serdar Tasiran.
Reasoning about TSO programs using reduction and abstraction. In CAV, 2018.
doi:10.1007/978-3-319-96142-2_21.

[24] Tracy Camp, Phil Kearns, and Mohan Ahuja. Proof rules for flush channels. IEEE
Trans. Software Eng., 19(4), 1993. doi:10.1109/32.223804.

[25] David Castro-Perez, Raymond Hu, Sung-Shik Jongmans, Nicholas Ng, and Nobuko
Yoshida. Distributed programming using role-parametric session types in Go:
statically-typed endpoint APIs for dynamically-instantiated communication struc-
tures. In POPL, 2019. doi:10.1145/3290342.

[26] Tej Chajed, M. Frans Kaashoek, Butler W. Lampson, and Nickolai Zeldovich.
Verifying concurrent software using movers in CSPEC. In OSDI, 2018. URL:
https://www.usenix.org/conference/osdi18/presentation/chajed.

[27] Ernest J. H. Chang and Rosemary Roberts. An improved algorithm for decentralized
extrema-finding in circular configurations of processes. Commun. ACM, 22(5), 1979.
doi:10.1145/359104.359108.

http://dx.doi.org/10.1007/11804192_17
http://dx.doi.org/10.1145/3276514
http://dx.doi.org/10.1007/978-3-319-66845-1_7
http://dx.doi.org/10.1007/978-3-319-66845-1_7
http://dl.gi.de/handle/20.500.12116/30973
http://dl.gi.de/handle/20.500.12116/30973
http://dx.doi.org/10.1007/978-3-642-28756-5_31
http://dx.doi.org/10.1007/978-3-319-63390-9_28
http://dx.doi.org/10.1007/978-3-319-63390-9_28
http://dx.doi.org/10.1007/978-3-662-54434-1_7
http://dx.doi.org/10.1007/978-3-642-23702-7_13
http://dx.doi.org/10.1007/978-3-319-96142-2_23
http://dx.doi.org/10.1007/978-3-319-96142-2_21
http://dx.doi.org/10.1109/32.223804
http://dx.doi.org/10.1145/3290342
https://www.usenix.org/conference/osdi18/presentation/chajed
http://dx.doi.org/10.1145/359104.359108


99

[28] Dmitry Chistikov, Rupak Majumdar, and Filip Niksic. Hitting families of schedules
for asynchronous programs. In CAV, 2016. doi:10.1007/978-3-319-41540-6_9.

[29] Ching-Tsun Chou and Eli Gafni. Understanding and verifying distributed algorithms
using stratified decomposition. In PODC, 1988. doi:10.1145/62546.62556.

[30] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization
skeletons using branching-time temporal logic. In Logics of Programs, 1981. doi:
10.1007/BFb0025774.

[31] Edmund M. Clarke, David E. Long, and Kenneth L. McMillan. Compositional model
checking. In LICS, 1989. doi:10.1109/LICS.1989.39190.

[32] Ernie Cohen, Markus Dahlweid, Mark A. Hillebrand, Dirk Leinenbach, Michal Moskal,
Thomas Santen, Wolfram Schulte, and Stephan Tobies. VCC: A practical system for
verifying concurrent C. In TPHOLs, 2009. doi:10.1007/978-3-642-03359-9_2.

[33] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In
POPL, 1977. doi:10.1145/512950.512973.

[34] Andrei Damian, Cezara Dragoi, Alexandru Militaru, and Josef Widder.
Communication-closed asynchronous protocols. In CAV, 2019. doi:10.1007/978-
3-030-25543-5_20.

[35] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In
TACAS, 2008. doi:10.1007/978-3-540-78800-3_24.

[36] Leonardo Mendonça de Moura and Nikolaj Bjørner. Generalized, efficient array
decision procedures. In FMCAD, 2009. doi:10.1109/FMCAD.2009.5351142.

[37] Willem P. de Roever, Frank S. de Boer, Ulrich Hannemann, Jozef Hooman, Yassine
Lakhnech, Mannes Poel, and Job Zwiers. Concurrency Verification: Introduction to
Compositional and Noncompositional Methods, volume 54 of Cambridge Tracts in
Theoretical Computer Science. 2001.

[38] Ankush Desai, Vivek Gupta, Ethan K. Jackson, Shaz Qadeer, Sriram K. Rajamani,
and Damien Zufferey. P: safe asynchronous event-driven programming. In PLDI,
2013. doi:10.1145/2491956.2462184.

[39] Ankush Desai, Shaz Qadeer, and Sanjit A. Seshia. Systematic testing of asynchronous
reactive systems. In ESEC/FSE, 2015. doi:10.1145/2786805.2786861.

[40] Cezara Dragoi, Thomas A. Henzinger, and Damien Zufferey. PSync: a partially
synchronous language for fault-tolerant distributed algorithms. In POPL, 2016.
doi:10.1145/2837614.2837650.

[41] Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. A calculus of atomic actions. In
POPL, 2009. doi:10.1145/1480881.1480885.

[42] Tzilla Elrad and Nissim Francez. Decomposition of distributed programs into
communication-closed layers. Sci. Comput. Program., 2(3), 1982. doi:10.1016/
0167-6423(83)90013-8.

http://dx.doi.org/10.1007/978-3-319-41540-6_9
http://dx.doi.org/10.1145/62546.62556
http://dx.doi.org/10.1007/BFb0025774
http://dx.doi.org/10.1007/BFb0025774
http://dx.doi.org/10.1109/LICS.1989.39190
http://dx.doi.org/10.1007/978-3-642-03359-9_2
http://dx.doi.org/10.1145/512950.512973
http://dx.doi.org/10.1007/978-3-030-25543-5_20
http://dx.doi.org/10.1007/978-3-030-25543-5_20
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1109/FMCAD.2009.5351142
http://dx.doi.org/10.1145/2491956.2462184
http://dx.doi.org/10.1145/2786805.2786861
http://dx.doi.org/10.1145/2837614.2837650
http://dx.doi.org/10.1145/1480881.1480885
http://dx.doi.org/10.1016/0167-6423(83)90013-8
http://dx.doi.org/10.1016/0167-6423(83)90013-8


100

[43] Michael Emmi, Shaz Qadeer, and Zvonimir Rakamaric. Delay-bounded scheduling.
In POPL, 2011. doi:10.1145/1926385.1926432.

[44] Azadeh Farzan and Anthony Vandikas. Reductions for safety proofs. In POPL, 2020.
doi:10.1145/3371081.

[45] Alain Finkel and Philippe Schnoebelen. Well-structured transition systems ev-
erywhere! Theor. Comput. Sci., 256(1-2), 2001. doi:10.1016/S0304-3975(00)
00102-X.

[46] Cormac Flanagan and Stephen N. Freund. FastTrack: efficient and precise dynamic
race detection. In PLDI, 2009. doi:10.1145/1542476.1542490.

[47] Cormac Flanagan and Shaz Qadeer. A type and effect system for atomicity. In
PLDI, 2003. doi:10.1145/781131.781169.

[48] Robert W. Floyd. Assigning meanings to programs. Proceedings of Symposium on
Applied Mathematics, 19:19–32, 1967.

[49] Ivan Gavran, Filip Niksic, Aditya Kanade, Rupak Majumdar, and Viktor Vafeiadis.
Rely/guarantee reasoning for asynchronous programs. In CONCUR, 2015. doi:
10.4230/LIPIcs.CONCUR.2015.483.

[50] Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent Systems
- An Approach to the State-Explosion Problem, volume 1032 of Lecture Notes in
Computer Science. 1996. doi:10.1007/3-540-60761-7.

[51] Susanne Graf and Hassen Säıdi. Construction of abstract state graphs with PVS. In
CAV, 1997. doi:10.1007/3-540-63166-6_10.

[52] Ronghui Gu, Zhong Shao, Hao Chen, Jieung Kim, Jérémie Koenig, Xiongnan (New-
man) Wu, Vilhelm Sjöberg, and David Costanzo. Building certified concurrent OS
kernels. Commun. ACM, 62(10), 2019. doi:10.1145/3356903.

[53] Ronghui Gu, Zhong Shao, Jieung Kim, Xiongnan (Newman) Wu, Jérémie Koenig,
Vilhelm Sjöberg, Hao Chen, David Costanzo, and Tahina Ramananandro. Certified
concurrent abstraction layers. In PLDI, 2018. doi:10.1145/3192366.3192381.

[54] Ashutosh Gupta, Corneliu Popeea, and Andrey Rybalchenko. Predicate abstraction
and refinement for verifying multi-threaded programs. In POPL, 2011. doi:10.
1145/1926385.1926424.

[55] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno,
Michael L. Roberts, Srinath T. V. Setty, and Brian Zill. IronFleet: proving practical
distributed systems correct. In SOSP, 2015. doi:10.1145/2815400.2815428.

[56] Chris Hawblitzel, Erez Petrank, Shaz Qadeer, and Serdar Tasiran. Automated
and modular refinement reasoning for concurrent programs. In CAV, 2015. doi:
10.1007/978-3-319-21668-3_26.

[57] Chris Hawblitzel, Erez Petrank, Shaz Qadeer, and Serdar Tasiran. Au-
tomated and modular refinement reasoning for concurrent programs.
Technical Report MSR-TR-2015-8, Microsoft Research, 2015. URL:

http://dx.doi.org/10.1145/1926385.1926432
http://dx.doi.org/10.1145/3371081
http://dx.doi.org/10.1016/S0304-3975(00)00102-X
http://dx.doi.org/10.1016/S0304-3975(00)00102-X
http://dx.doi.org/10.1145/1542476.1542490
http://dx.doi.org/10.1145/781131.781169
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.483
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.483
http://dx.doi.org/10.1007/3-540-60761-7
http://dx.doi.org/10.1007/3-540-63166-6_10
http://dx.doi.org/10.1145/3356903
http://dx.doi.org/10.1145/3192366.3192381
http://dx.doi.org/10.1145/1926385.1926424
http://dx.doi.org/10.1145/1926385.1926424
http://dx.doi.org/10.1145/2815400.2815428
http://dx.doi.org/10.1007/978-3-319-21668-3_26
http://dx.doi.org/10.1007/978-3-319-21668-3_26


101

https://www.microsoft.com/en-us/research/publication/automated-
and-modular-refinement-reasoning-for-concurrent-programs/.

[58] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre. Lazy
abstraction. In POPL, 2002. doi:10.1145/503272.503279.

[59] Maurice Herlihy and Jeannette M. Wing. Linearizability: A correctness condition
for concurrent objects. ACM Trans. Program. Lang. Syst., 12(3), 1990. doi:
10.1145/78969.78972.

[60] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12(10), 1969. doi:10.1145/363235.363259.

[61] Gerard J. Holzmann. The model checker SPIN. IEEE Trans. Software Eng., 23(5),
1997. doi:10.1109/32.588521.

[62] Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx,
and Frank Piessens. VeriFast: A powerful, sound, predictable, fast verifier for C and
Java. In NFM, 2011. doi:10.1007/978-3-642-20398-5_4.

[63] Cliff B. Jones. Specification and design of (parallel) programs. In IFIP Congress,
1983.

[64] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal,
and Derek Dreyer. Iris from the ground up: A modular foundation for higher-
order concurrent separation logic. J. Funct. Program., 28, 2018. doi:10.1017/
S0956796818000151.

[65] Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy, Marianna Rapoport, Amin
Timany, Derek Dreyer, and Bart Jacobs. The future is ours: prophecy variables in
separation logic. In POPL, 2020. doi:10.1145/3371113.

[66] Artem Khyzha, Mike Dodds, Alexey Gotsman, and Matthew J. Parkinson. Proving
linearizability using partial orders. In ESOP, 2017. doi:10.1007/978-3-662-
54434-1_24.

[67] Johannes Kloos, Rupak Majumdar, and Viktor Vafeiadis. Asynchronous liquid
separation types. In ECOOP, 2015. doi:10.4230/LIPIcs.ECOOP.2015.396.

[68] Bernhard Kragl, Constantin Enea, Thomas A. Henzinger, Suha Orhun Mutluergil,
and Shaz Qadeer. Inductive sequentialization of asynchronous programs. In PLDI,
2020. doi:10.1145/3385412.3385980.

[69] Bernhard Kragl, Constantin Enea, Thomas A. Henzinger, Suha Orhun Mutluergil,
and Shaz Qadeer. Inductive sequentialization of asynchronous programs (evaluated
artifact), 2020. doi:10.5281/zenodo.3754772.

[70] Bernhard Kragl and Shaz Qadeer. Layered concurrent programs. In CAV, 2018.
doi:10.1007/978-3-319-96145-3_5.

[71] Bernhard Kragl, Shaz Qadeer, and Thomas A. Henzinger. Synchronizing the asyn-
chronous. In CONCUR, 2018. doi:10.4230/LIPIcs.CONCUR.2018.21.

https://www.microsoft.com/en-us/research/publication/automated-and-modular-refinement-reasoning-for-concurrent-programs/
https://www.microsoft.com/en-us/research/publication/automated-and-modular-refinement-reasoning-for-concurrent-programs/
http://dx.doi.org/10.1145/503272.503279
http://dx.doi.org/10.1145/78969.78972
http://dx.doi.org/10.1145/78969.78972
http://dx.doi.org/10.1145/363235.363259
http://dx.doi.org/10.1109/32.588521
http://dx.doi.org/10.1007/978-3-642-20398-5_4
http://dx.doi.org/10.1017/S0956796818000151
http://dx.doi.org/10.1017/S0956796818000151
http://dx.doi.org/10.1145/3371113
http://dx.doi.org/10.1007/978-3-662-54434-1_24
http://dx.doi.org/10.1007/978-3-662-54434-1_24
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.396
http://dx.doi.org/10.1145/3385412.3385980
http://dx.doi.org/10.5281/zenodo.3754772
http://dx.doi.org/10.1007/978-3-319-96145-3_5
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.21


102

[72] Bernhard Kragl, Shaz Qadeer, and Thomas A. Henzinger. Refinement for structured
concurrent programs. In CAV, 2020. doi:10.1007/978-3-030-53288-8_14.

[73] Siddharth Krishna, Michael Emmi, Constantin Enea, and Dejan Jovanovic. Verifying
visibility-based weak consistency. In ESOP, 2020. doi:10.1007/978-3-030-
44914-8_11.

[74] Akash Lal and Thomas W. Reps. Reducing concurrent analysis under a context bound
to sequential analysis. In CAV, 2008. doi:10.1007/978-3-540-70545-1_7.

[75] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2), 1998.
doi:10.1145/279227.279229.

[76] Leslie Lamport. Specifying Systems, The TLA+ Language and Tools for Hardware
and Software Engineers. 2002.

[77] K. Rustan M. Leino. Dafny: An automatic program verifier for functional correctness.
In LPAR, 2010. doi:10.1007/978-3-642-17511-4_20.

[78] K. Rustan M. Leino, Peter Müller, and Jan Smans. Verification of concurrent
programs with Chalice. In FOSAD, 2009. doi:10.1007/978-3-642-03829-7_7.

[79] Gary Levin and David Gries. A proof technique for communicating sequential
processes. Acta Informatica, 15, 1981. doi:10.1007/BF00289266.

[80] Richard J. Lipton. Reduction: A method of proving properties of parallel programs.
Commun. ACM, 18(12), 1975. doi:10.1145/361227.361234.

[81] Jacob R. Lorch, Yixuan Chen, Manos Kapritsos, Bryan Parno, Shaz Qadeer,
Upamanyu Sharma, James R. Wilcox, and Xueyuan Zhao. Armada: low-effort
verification of high-performance concurrent programs. In PLDI, 2020. doi:
10.1145/3385412.3385971.

[82] Nancy A. Lynch and Frits W. Vaandrager. Forward and backward simulations: I.
untimed systems. Inf. Comput., 121(2), 1995. doi:10.1006/inco.1995.1134.

[83] Rupak Majumdar and Filip Niksic. Why is random testing effective for partition
tolerance bugs? In POPL, 2018. doi:10.1145/3158134.

[84] Zohar Manna and Amir Pnueli. A hierarchy of temporal properties. In PODC, 1990.
doi:10.1145/93385.93442.

[85] Kenneth L. McMillan. Symbolic model checking. 1993. doi:10.1007/978-1-4615-
3190-6.

[86] Kenneth L. McMillan. A compositional rule for hardware design refinement. In
CAV, 1997. doi:10.1007/3-540-63166-6_6.

[87] Kenneth L. McMillan. Verification of an implementation of Tomasulo’s algorithm
by compositional model checking. In CAV, 1998. doi:10.1007/BFb0028738.

[88] Peter Müller, Malte Schwerhoff, and Alexander J. Summers. Viper: A verification
infrastructure for permission-based reasoning. In VMCAI, 2016. doi:10.1007/978-
3-662-49122-5_2.

http://dx.doi.org/10.1007/978-3-030-53288-8_14
http://dx.doi.org/10.1007/978-3-030-44914-8_11
http://dx.doi.org/10.1007/978-3-030-44914-8_11
http://dx.doi.org/10.1007/978-3-540-70545-1_7
http://dx.doi.org/10.1145/279227.279229
http://dx.doi.org/10.1007/978-3-642-17511-4_20
http://dx.doi.org/10.1007/978-3-642-03829-7_7
http://dx.doi.org/10.1007/BF00289266
http://dx.doi.org/10.1145/361227.361234
http://dx.doi.org/10.1145/3385412.3385971
http://dx.doi.org/10.1145/3385412.3385971
http://dx.doi.org/10.1006/inco.1995.1134
http://dx.doi.org/10.1145/3158134
http://dx.doi.org/10.1145/93385.93442
http://dx.doi.org/10.1007/978-1-4615-3190-6
http://dx.doi.org/10.1007/978-1-4615-3190-6
http://dx.doi.org/10.1007/3-540-63166-6_6
http://dx.doi.org/10.1007/BFb0028738
http://dx.doi.org/10.1007/978-3-662-49122-5_2
http://dx.doi.org/10.1007/978-3-662-49122-5_2


103

[89] Madanlal Musuvathi and Shaz Qadeer. Iterative context bounding for systematic test-
ing of multithreaded programs. In PLDI, 2007. doi:10.1145/1250734.1250785.

[90] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gérard Basler, Pira-
manayagam Arumuga Nainar, and Iulian Neamtiu. Finding and repro-
ducing heisenbugs in concurrent programs. In OSDI, 2008. URL: https:
//www.usenix.org/conference/osdi-08/finding-and-reproducing-
heisenbugs-concurrent-programs.

[91] Suha Orhun Mutluergil and Serdar Tasiran. A mechanized refinement proof of the
Chase-Lev deque using a proof system. Computing, 101(1), 2019. doi:10.1007/
s00607-018-0635-4.

[92] Peter W. O’Hearn. Resources, concurrency, and local reasoning. Theor. Comput.
Sci., 375(1-3), 2007. doi:10.1016/j.tcs.2006.12.035.

[93] Wytse Oortwijn, Stefan Blom, and Marieke Huisman. Future-based static analysis
of message passing programs. In PLACES, 2016. doi:10.4204/EPTCS.211.7.

[94] Susan S. Owicki. Axiomatic Proof Techniques for Parallel Programs. PhD thesis,
Cornell University, 1975. URL: https://hdl.handle.net/1813/6393.

[95] Susan S. Owicki and David Gries. Verifying properties of parallel programs: An
axiomatic approach. Commun. ACM, 19(5), 1976. doi:10.1145/360051.360224.

[96] Burcu Kulahcioglu Ozkan, Rupak Majumdar, Filip Niksic, Mitra Tabaei Befrouei, and
Georg Weissenbacher. Randomized testing of distributed systems with probabilistic
guarantees. In OOPSLA, 2018. doi:10.1145/3276530.

[97] Oded Padon, Giuliano Losa, Mooly Sagiv, and Sharon Shoham. Paxos made
EPR: decidable reasoning about distributed protocols. In OOPSLA, 2017. doi:
10.1145/3140568.

[98] Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and Sharon
Shoham. Ivy: safety verification by interactive generalization. In PLDI, 2016.
doi:10.1145/2908080.2908118.

[99] Shaz Qadeer and Jakob Rehof. Context-bounded model checking of concurrent
software. In TACAS, 2005. doi:10.1007/978-3-540-31980-1_7.

[100] Shaz Qadeer and Dinghao Wu. KISS: keep it simple and sequential. In PLDI, 2004.
doi:10.1145/996841.996845.

[101] Jean-Pierre Queille and Joseph Sifakis. Specification and verification of concurrent
systems in CESAR. In Symposium on Programming, 1982. doi:10.1007/3-540-
11494-7_22.

[102] Richard D. Schlichting and Fred B. Schneider. Using message passing for distributed
programming: Proof rules, disciplines. ACM Trans. Program. Lang. Syst., 6(3), 1984.
doi:10.1145/579.583.

[103] Fred B. Schneider. On Concurrent Programming. Graduate Texts in Computer
Science. 1997. doi:10.1007/978-1-4612-1830-2.

http://dx.doi.org/10.1145/1250734.1250785
https://www.usenix.org/conference/osdi-08/finding-and-reproducing-heisenbugs-concurrent-programs
https://www.usenix.org/conference/osdi-08/finding-and-reproducing-heisenbugs-concurrent-programs
https://www.usenix.org/conference/osdi-08/finding-and-reproducing-heisenbugs-concurrent-programs
http://dx.doi.org/10.1007/s00607-018-0635-4
http://dx.doi.org/10.1007/s00607-018-0635-4
http://dx.doi.org/10.1016/j.tcs.2006.12.035
http://dx.doi.org/10.4204/EPTCS.211.7
https://hdl.handle.net/1813/6393
http://dx.doi.org/10.1145/360051.360224
http://dx.doi.org/10.1145/3276530
http://dx.doi.org/10.1145/3140568
http://dx.doi.org/10.1145/3140568
http://dx.doi.org/10.1145/2908080.2908118
http://dx.doi.org/10.1007/978-3-540-31980-1_7
http://dx.doi.org/10.1145/996841.996845
http://dx.doi.org/10.1007/3-540-11494-7_22
http://dx.doi.org/10.1007/3-540-11494-7_22
http://dx.doi.org/10.1145/579.583
http://dx.doi.org/10.1007/978-1-4612-1830-2


104

[104] Ilya Sergey, James R. Wilcox, and Zachary Tatlock. Programming and proving with
distributed protocols. In POPL, 2018. doi:10.1145/3158116.

[105] Ali Sezgin, Serdar Tasiran, and Shaz Qadeer. Tressa: Claiming the future. In
VSTTE, 2010. doi:10.1007/978-3-642-15057-9_2.

[106] Scott D. Stoller and Fred B. Schneider. Verifying programs that use causally-
ordered message-passing. Sci. Comput. Program., 24(2), 1995. doi:10.1016/0167-
6423(95)00002-A.

[107] Alexander J. Summers and Peter Müller. Actor services - modular verification
of message passing programs. In ESOP, 2016. doi:10.1007/978-3-662-49498-
1_27.

[108] The Coq Development Team. The Coq proof assistant, version 8.11.0, 2020. doi:
10.5281/zenodo.3744225.

[109] Salvatore La Torre, P. Madhusudan, and Gennaro Parlato. Reducing context-
bounded concurrent reachability to sequential reachability. In CAV, 2009. doi:
10.1007/978-3-642-02658-4_36.

[110] Viktor Vafeiadis. Automatically proving linearizability. In CAV, 2010. doi:10.
1007/978-3-642-14295-6_40.

[111] Klaus von Gleissenthall, Nikolaj Bjørner, and Andrey Rybalchenko. Cardinalities
and universal quantifiers for verifying parameterized systems. In PLDI, 2016. doi:
10.1145/2908080.2908129.

[112] Klaus von Gleissenthall, Rami Gökhan Kici, Alexander Bakst, Deian Stefan, and Ran-
jit Jhala. Pretend synchrony: synchronous verification of asynchronous distributed
programs. In POPL, 2019. doi:10.1145/3290372.

[113] Philip Wadler. Linear types can change the world! In IFIP Congress, 1990.

[114] David Walker. Substructural type systems. In Benjamin C. Pierce, editor, Advanced
Topics in Types and Programming Languages, pages 3–44. The MIT Press, 2004.
doi:10.7551/mitpress/1104.003.0003.

[115] James R. Wilcox, Cormac Flanagan, and Stephen N. Freund. VerifiedFT: a verified,
high-performance precise dynamic race detector. In PPoPP, 2018. doi:10.1145/
3178487.3178514.

[116] James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang,
Michael D. Ernst, and Thomas E. Anderson. Verdi: a framework for implementing
and formally verifying distributed systems. In PLDI, 2015. doi:10.1145/2737924.
2737958.

[117] Niklaus Wirth. Program development by stepwise refinement. Commun. ACM,
14(4), 1971. doi:10.1145/362575.362577.

http://dx.doi.org/10.1145/3158116
http://dx.doi.org/10.1007/978-3-642-15057-9_2
http://dx.doi.org/10.1016/0167-6423(95)00002-A
http://dx.doi.org/10.1016/0167-6423(95)00002-A
http://dx.doi.org/10.1007/978-3-662-49498-1_27
http://dx.doi.org/10.1007/978-3-662-49498-1_27
http://dx.doi.org/10.5281/zenodo.3744225
http://dx.doi.org/10.5281/zenodo.3744225
http://dx.doi.org/10.1007/978-3-642-02658-4_36
http://dx.doi.org/10.1007/978-3-642-02658-4_36
http://dx.doi.org/10.1007/978-3-642-14295-6_40
http://dx.doi.org/10.1007/978-3-642-14295-6_40
http://dx.doi.org/10.1145/2908080.2908129
http://dx.doi.org/10.1145/2908080.2908129
http://dx.doi.org/10.1145/3290372
http://dx.doi.org/10.7551/mitpress/1104.003.0003
http://dx.doi.org/10.1145/3178487.3178514
http://dx.doi.org/10.1145/3178487.3178514
http://dx.doi.org/10.1145/2737924.2737958
http://dx.doi.org/10.1145/2737924.2737958
http://dx.doi.org/10.1145/362575.362577

	Abstract
	Acknowledgments
	About the Author
	List of Publications
	List of Tables
	List of Figures
	Introduction
	Specifications
	The Landscape of Verification Approaches
	Deductive Verification of Concurrent Programs
	Contributions and Outline

	Layered Concurrent Programs
	Introduction
	Concurrent Programs
	Layered Concurrent Programs
	Refinement Checking
	Conclusion

	Refinement for Structured Concurrent Programs
	Introduction
	Overview
	RefPL: Syntax and Semantics
	Abstracting RefPL Programs
	Implementation
	Conclusions

	Synchronizing the Asynchronous
	Introduction
	Overview
	An Asynchronous Programming Language
	Synchronizing Asynchrony
	Verifying Synchronization
	Eliminating Pending Asynchrony
	Evaluation
	Related Work
	Conclusion

	Inductive Sequentialization of Asynchronous Programs
	Introduction
	Overview
	Preliminaries
	Inductive Sequentialization
	Evaluation
	Related Work
	Conclusion

	Conclusions

