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Abstract

Asynchronous programs are notoriously difficult to reason
about because they spawn computation tasks which take
effect asynchronously in a nondeterministic way. Devising
inductive invariants for such programs requires understand-
ing and stating complex relationships between an unbounded
number of computation tasks in arbitrarily long executions.
In this paper, we introduce inductive sequentialization, a new
proof rule that sidesteps this complexity via a sequential re-
duction, a sequential program that captures every behavior
of the original program up to reordering of coarse-grained
commutative actions. A sequential reduction of a concurrent
program is easy to reason about since it corresponds to a
simple execution of the program in an idealized synchronous
environment, where processes act in a fixed order and at the
same speed. We have implemented and integrated our proof
rule in the CIVL verifier, allowing us to provably derive
fine-grained implementations of asynchronous programs.
We have successfully applied our proof rule to a diverse
set of message-passing protocols, including leader election
protocols, two-phase commit, and Paxos.
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1 Introduction

Asynchronous programming is widely adopted for building
responsive and efficient software. Unlike synchronous proce-
dure calls that block the caller and hence must be executed
immediately, asynchronous procedure calls do not block the
caller and can be executed in parallel. Depending on the
nature of the application, an asynchronous call could either
execute in the same process (on another thread), a differ-
ent process on the same node, or a different node entirely.
Asynchronous programming is essential for distributed fault-
tolerant software and client-server applications.

Asynchronous programs are notoriously hard to get right.
There is inherent nondeterminism in their semantics due to
the different orders in which asynchronous calls can execute.
This complexity is exacerbated by further nondeterminism
due to the execution platform, e.g., network delays and par-
titions in distributed applications. A promising approach to
proving the correctness of realistic implementations is to go
through a sequence of abstraction steps. Each abstraction
step leads to a successively simpler program such that the
correctness of the most abstract program implies the correct-
ness of the most concrete program. Alternatively, a realistic
implementation could be derived from an abstract (and ob-
viously correct) program through a sequence of refinement

steps. Devising an automated program verifier that enables
refinement proofs is non-trivial and has received a great deal
of attention recently [9, 12, 20ś23, 28, 46].

Each link in the chain of programs connected together by
refinement steps must be justified by a proof rule. A useful
proof rule must be sound, broadly applicable, and able to
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simplify reasoning about programs. Many such proof rules
already exist including (1) variable introduction and elimina-
tion useful for changing the state representation, (2) reduc-
tion [34] for eliminating preemptions and creating atomic
blocks, and (3) summarization for creating summaries of a
block of code that executes atomically. These proof rules
work together symbiotically and have been implemented
to great effect in several refinement-oriented program veri-
fiers [9, 15, 23].

In this paper, we introduce Inductive Sequentialization (IS),
a new proof rule that works harmoniously with the other
aforementioned proof rules, thereby extending the overall
applicability of refinement-oriented program verifiers. IS sim-
plifies reasoning about unbounded concurrent executions of
an asynchronous program by reducing its correctness to that
of a single interleaving of the concurrently-executing actions
of the program. Our experience shows that the sequential
reduction established by IS for a distributed protocol (like
Chang-Roberts [10] and Paxos [31]) corresponds to an ex-
ecution of the protocol in an idealized environment where
processes execute in a fixed order, at the same speed, and
messages are delivered immediately unless they are lost. This
is the simplest execution of the protocol to reason about.
The goal of IS is to show that an asynchronous program

P is a refinement of a sequential program S. Here refine-
ment means that the summary, the relation between initial
and terminating states, of P is included in that of S. Since
any non-terminating program can be abstracted by one that
terminates after a nondeterministically chosen number of
steps, IS is capable of reasoning about all reachable states
and arbitrary safety properties of asynchronous programs. IS
combines inductive reasoning, showing that S summarizes
a single fixed interleaving π of the asynchronous calls in P,
with commutativity reasoning, showing that focusing only
on this single interleaving is sound.

The induction argument in IS is based on a user-provided
(nondeterministic) procedure I that represents all prefixes
of π . The asynchronous procedure calls whose effect is not
included in a particular execution of I remain asynchronous
and executable in an arbitrary order. This proof artifact is the
analog of an inductive invariant in a proof of safety. However,
unlike classical inductive invariants, inductiveness in our
proof rule is shown only w.r.t. a single operation at a time,
determined by π . The verification conditions prescribed by IS
check that S is the łmaximalž prefix of I, which represents
the complete interleaving π where no asynchronous calls
remain to execute.
It remains to be shown that the sequential order deter-

mined by π and summarized by I captures all terminating
executions of P. To achieve this goal, we exploit the concept
of a left mover [34], an atomic operation that may execute
earlier than other concurrently-executing operations with-
out changing the final state. If all operations in P are left

movers, then they can be reordered arbitrarily, in particu-
lar following the fixed interleaving π , thus allowing us to
conclude that every terminating state of P can be reached
by π . This approach does not work on practical protocols
because the concrete operations in P are not left movers.
However, we observed that if π is suitably chosen, then for
each operation A executed in π , there is an abstraction A′ of
A such that A′ is a left mover and A′ behaves identically to
A in the context of π . This observation allows us to replace
A with A′ when performing the inductiveness check in the
IS proof rule. This tight combination of induction, reduction,
and abstraction is one of the main technical contributions of
our work (described in detail in Section 4).
The applicability of IS is governed by two hypotheses

which hold in well-designed asynchronous systems: (1) to
ensure responsiveness, these systems extensively use short-
living asynchronous tasks, e.g., message handlers, that can
execute in parallel, and (2) asynchrony is meant to improve
performance but not modify the logic of the application, i.e.,
the asynchronous behaviors should be equivalent to idealized
synchronous behaviors where processes act at the same speed
and the infrastructure, e.g., the network, is synchronous.
The second hypothesis in particular has been addressed and
justified in the context of a wide class of applications [5, 7,
11, 12, 16]. The first hypothesis offers more opportunities for
a proof tactic based on reordering actions in an execution,
while the second enables the reduction to reasoning about a
single interleaving.
We have implemented IS as an extension of CIVL [23], a

verification system for concurrent programs based on au-
tomated refinement reasoning. This extension allows IS to
be interleaved with the other proof tactics implemented by
CIVL. We have evaluated the usability of IS on a diverse
set of message-passing protocols, including leader election
protocols like Chang-Roberts, a non-trivial version of two-
phase commit where nodes can abort early, and Paxos. We
demonstrate that our proof rule enables sequentializations
of all these protocols with a high degree of automation. Our
evaluation shows that IS supports simple sequential reduc-
tions of complex protocols. Furthermore, the proof artifacts
needed to establish the soundness of these reductions are
also devised thinking only about a single fixed interleaving.
Exploiting IS and other proof rules already implemented
in CIVL, we are able to derive protocol implementations
comprising fine-grained, verified event handlers which are
similar to the unverified implementations written by pro-
grammers today.
In summary, this paper contributes: (1) a new proof rule

called Inductive Sequentialization for eliminating concur-
rency from asynchronous programs, (2) an implementation
of this rule in the CIVL verifier, and (3) a demonstration of
its usefulness on a variety of challenging examples.
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2 Overview

In this section we provide an overview of inductive sequen-
tialization (IS). We motivate the challenges of deductive ver-
ification of asynchronous programs on a running example
and then illustrate the concepts of IS on this example.

2.1 Motivation

Verification of concurrent programs.We present our ver-
ification technique in a general framework based on (gated)
atomic actions over shared state and asynchronous thread
creation, which abstracts away the details of any particular
programming system irrelevant to our development. We will
illustrate these concepts and our contribution on an example.
Figure 1-① shows a simple broadcast consensus protocol

for n nodes (numbered from 1 to n) to agree on a common
value. The local states of the nodes are represented using
arrays, i.e., value[i] holds the input value of node i and
decision[i] stores the final decision of node i . For each node
i there are two concurrent threads created by the asynchro-
nous calls in procedure main: one thread executes procedure
broadcast(i) which sends the value of node i to every other
node j, and the other thread executes procedure collect(i)
which receives n values and stores the maximum as its de-
cision. We consider the channels CH[i] for exchanging mes-
sages to bemultisets (or bags) whichmodels a networkwhere
messages can be delayed and delivered out-of-order, and the
receive statement is blocking. Since every node receives the
values of all other nodes, it is the case that, after the protocol
finishes, all nodes must have decided on the same value, i.e.,

∀i, j ∈ [1,n]. decision[i] = decision[j], (1)

where [1,n] denotes the set of integers from 1 to n. However,
proving this property directly on the code in Figure 1-① is
notoriously complicated, i.e., requires an inductive invariant
that is disproportionally complicated given the simplicity of
the protocol. The challenge is that the send and receive oper-
ations across all nodes can execute in many different orders.
An inductive invariant has to capture all of these orders, and
represent every possible intermediate state that can occur.
In (2) below we show that, even after reduction, the required
inductive invariant remains complicated. This is in contrast
to the following intuitive reasoning a programmer would
employ to understand the correctness of the protocol:

łFirst, all nodes send their values to each other (the
order does not matter), and then, consequently, every
node receives the same set of n values to compute
the maximum (the order does not matter).ž

Our proof rule is designed to facilitate this kind of reason-
ing about only a representative set of execution orders. In
particular, we enable the programmer to think and reason
about the program sequentially. To justify that we can focus
the reasoning task on certain sequential execution orders

and ignore all other concurrent execution orders, we build
on the theory of mover types and reduction [15, 23, 34].

Atomic actions, mover types, and reduction. An execu-
tion of the program in Figure 1-① is naturally understood as
an interleaving of small atomic (i.e., uninterruptible) actions
of different threads. For instance, reading or writing a vari-
able, sending a message, and spawning a new thread are all
examples of fine-grained atomic actions. However, atomic
actions are equally well suited to specify coarser-grained
operations, and then the verification task can be understood
as the sound summarization of fine-grained concurrent ex-
ecutions by large atomic actions. Concretely, we consider
atomic actions of the form (ρ,τ ), where ρ is a set of states (or
one-state predicate), called gate, that specifies the states from
which the action does not fail (like an assertion), and τ is a
transition relation (or two-state predicate) that specifies the
possible state transitions when the action executes (possibly
including newly created threads). Note that the separation
of ρ and τ is important to distinguish failure from blocking.

To formalize the idea that the execution order of atomic ac-
tions sometimes does not matter, we assign amover type [18]
to every atomic action in a program. An atomic action is
a left (right) mover if it can be commuted to the left (right)
of every other atomic action executed by a different thread,
without altering the outcome of the execution. For example,
over bag channels as in Figure 1-①, where messages can
be received in an arbitrary order, receive is a right mover
and send is a left mover. Furthermore, asynchronous calls
(i.e., just the action of creating a new thread) are left movers,
and local variable accesses like reading value[i] and writing
decision[i] are both left and right movers (because no two
concurrent threads access them at the same index i). Note
that commutativity is checked pairwise among the pool of
actions in a given program, only using the action definitions
without considering reachable program executions. Thus an
action can be a mover in one program, but not in another.

Given the mover types of the atomic actions in a program,
consider a thread that, according to the static program order,
executes a sequence of atomic actions with the following
mover types: first a sequence of zero or more right movers,
then at most one non-mover, and finally a sequence of zero
or more left movers. We call such a sequence atomic, because
any execution where these actions are interleaved with ac-
tions from other threads can be permuted into an equivalent
execution where the atomic sequence is uninterrupted by
other threads. Following this argument, the reductionmethod
lets us summarize atomic sequences into bigger atomic ac-
tions. Figure 1-② shows the result of applying reduction to
Figure 1-①, where all three procedures are atomic; main is
a sequence of left-moving asynchronous calls, broadcast
is a sequence of left-moving sends and both-moving reads
of value[i], and collect is a sequence of right-moving re-
ceives and both-moving reads and writes of decision[i].
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1 proc main: ①

2 for i in 1..n:

3 async broadcast(i)

4 async collect(i)

5 proc broadcast(i):

6 for j in 1..n:

7 send value[i] CH[j]

8 proc collect(i):

9 decision[i] := -∞
10 for j in 1..n:

11 v := receive CH[i]

12 if v > decision[i]:

13 decision[i] := v

14 action Main: ②

15 // atomically create 2n new threads
16 for i in 1..n:

17 async Broadcast(i)

18 async Collect(i)

19 action Broadcast(i):

20 // atomically send value[i] to all nodes j
21 for j in 1..n:

22 send value[i] CH[j]

23 action Collect(i):

24 // atomically receive n values and compute max.
25 vs := receive(n) CH[i]

26 decision[i] := max(vs)

27 action Main': ③

28 for i in 1..n:

29 call Broadcast(i)

30 for i in 1..n:

31 call Collect(i)

32 action CollectAbs(i): ④

33 assert ∀j. Broadcast(j) < Ω

34 assert |CH[i]| ≥ n

35 call Collect(i)

36 action Inv: ⑤

37 assume 0 ≤ k ≤ n

38 assume 0 ≤ l ≤ n

39 for i in 1..k:

40 call Broadcast(i)

41 for i in k+1..n:

42 async Broadcast(i)

43 if k , n:

44 l := 0

45 for i in 1..l:

46 call Collect(i)

47 for i in l+1..n:

48 async Collect(i)

Figure 1. Broadcast consensus protocol. ① Original program. ② Program after reduction to atomic actions. ③ Sequentialization.
④ Abstraction of Collect action. ⑤ Partial sequentialization.

Here we want to stress two important points. First, we con-
veniently represent atomic actions as code blocks. While this
makes, e.g., the action Broadcast(i) (Figure 1-②) visually ap-
pear the same as the procedure broadcast(i) (Figure 1-①), it
represents an atomic broadcast of value[i] to all other nodes
in one single step. Second, atomic actions can create new
concurrent threads, represented as asynchronous calls. For
example, executing action Main (Figure 1-②) has the effect
of atomically creating 2n new threads (n Broadcast’s and n
Collect’s), without yet executing any of their steps. We call
these new threads pending asyncs (PAs), since their future
effect is not summarized into the parent action. Formally, a
PA is an action name together with parameter values, and
we denote a set of pending asyncs with the variable Ω.

For the presentation in this paper we assume that pro-
grams are given as a set of atomic actions with PAs. In prac-
tice, this means that reduction is typically applied before our
new technique, e.g., using the framework of layered concur-
rent programs [27]. In theory, this assumption is without loss
of generality, since a non-atomic sequence of actions A;B
can be represented with A having a PA to its continuation B.

Atomic actions are no silver bullet. Reducing a program
to atomic actions with PAs is no panacea for the deductive
verification of concurrent programs. In general, PAs still
cause many different concurrent execution orders, and an
inductive invariant has to capture all of them. For example,
consider the inductive invariant for Figure 1-②:

(

Ω = {Main} ∧ (∀i ∈ [1, n]. CH[i] = �)
)

∨
(

∃D ⊆ [1, n]. (∀i ∈ [1, n]. CH[i] = {value[j] | j ∈ D }) ∧

Ω = {Broadcast(i) | i ∈ [1, n] \ D } ⊎

{Collect(i) | i ∈ [1, n]}
)

∨
(

∃D ⊆ [1, n]. (∀i ∈ [1, n] \ D . CH[i] = {value[j] | j ∈ [1, n]} ∧

(∀i ∈ D . decision[i] = max{value[j] | j ∈ [1, n]}) ∧

Ω = {Collect(i) | i ∈ [1, n] \ D }
)

(2)

The first disjunct captures the initial state with a single PA
to Main and all channels empty, the second disjunct cap-
tures the intermediate states where any subset of nodes D
performed their Broadcast and the remaining Broadcast’s
and all Collect’s are still pending, and the third disjunct
captures the intermediate states where any subset of nodes

D performed their Collect. Setting D = [1,n] in the third
disjunct implies the correctness property (1) and that no PAs
are left (i.e., Ω = �). Note that in this example the Collect’s
happen after the Broadcast’s, because the Collect’s block
until there are n messages in their corresponding channel.
However, there are still two sources of complexity in reason-
ing with invariant (2) that our new method addresses. First,
the ordering of Broadcast’s before Collect’s is not made
explicit in the invariant; to show the inductiveness of (2) we
have to prove that in a state with remaining Broadcast’s (i.e.,
satisfying the second disjunct) the Collect’s are blocked.
Second, the execution order among the Broadcast’s and
among the Collect’s does not matter, and thus we only want
to reason about the łsequentialž execution of Broadcast’s
happening in order from 1 to n, and similarly for Collect’s.

2.2 Inductive Sequentialization

In this paper we provide an approach to enable sequential rea-
soning about asynchronous concurrent programs in the form
of a program-transforming (refinement) proof rule called in-

ductive sequentialization (IS). A first idea of IS is to exploit
mover types to eliminate PAs from atomic actions. By that
we mean instead of an action creating a PA that takes effect
asynchronously at a later time, we establish conditions that
let us reason about the PA taking effect immediately, and
thus combine it with the calling action. In particular, this is
the case if the PA is a left mover, because then it can bemoved
earlier in an execution, to immediately follow its caller. How-
ever, atomic actions can generally create unboundedly many
PAs, and the elimination of one PA can also introduce new
ones if the eliminated PA has PAs itself. Our solution with IS
to eliminate unboundedly many PAs at once is an induction

scheme that has to address the following challenges:

C1 How to express intermediate results during the elimi-
nation of unboundedly many PAs?

C2 How to control the order of eliminating PAs to enable
sequential reasoning?

C3 How to eliminate PAs that are not left movers?

We illustrate these challenges and how they are solved by IS
on the consensus protocol in Figure 1-②. In particular, we
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show how an application of IS derives that the consensus pro-
tocol is a sound refinement of the sequential program Main'

in Figure 1-③. Main' represents a very simple schedule of
the consensus protocol where all Broadcast’s are executed
before all Collect’s, and in a round-robin fashion.

Challenge C1 is addressed by an invariant action, namely
Inv in Figure 1-⑤. It represents (summarizes) the interme-
diate results during the induction, i.e., all prefixes of the
schedule defining Main'. Therefore, either only some pending
Broadcast’s are already eliminated and the rest of the PAs
are still pending (when k < n), or all Broadcast’s and some
number of Collect’s are already eliminated (when k = n).
Note that the number of Broadcast’s or Collect’s that are
summarized by Inv is chosen nondeterministically. This al-
lows Inv to summarize all prefixes of the schedule defining
Main', one prefix for every choice of k and l . While we be-
lieve that the code of Inv is quite simple to understand, this
is of course not the only way to represent prefixes of Main'.
In general, IS is not sensitive to a particular representation.

Customary for an induction, IS has a base case and an in-
duction step. The base case of IS, i.e., that the effect of Main is
captured by Inv, is satisfied withk = 0. For the induction step,
i.e., that the elimination of a Broadcast or Collect PA from
Inv is still captured by Inv, we want to proceed with our
sequential intuition and thus have to address challenge C2.

Every Broadcast PA created by a transition of Inv is a left
mover, and thus any one of them could be eliminated next.
However, the natural choice is to eliminate Broadcast(k+1).
For Inv this is also the only way to satisfy the induction step,
by advancing from k to k + 1. To communicate this choice to
IS, the proof rule is parameterized with a choice function that
selects the next PA to eliminate from any state with PAs left
to eliminate. The choice function for our example always
selects the Broadcast(i) PA with the smallest parameter
i , as long as there exists one, and otherwise it selects the
Collect(i) PA with the smallest parameter i .

The Collect actions are, however, not left movers, mani-
festing challenge C3. First, receives do not commute to the
left of sends, and second, left movers also have to satisfy
a non-blocking condition, namely that it is always possible
to execute the action (from any state that satisfies its gate).
A Collect action blocks in every state that has less than n

messages to receive. The solution provided by IS is that ab-
stractions for the atomic actions to be eliminated can be pro-
vided, which are used both for establishing left-moverness
and to eliminate the PA selected by the choice function in
the induction step. Note that there always exists a trivial
abstraction that satisfies the mover conditions. Given an in-
ductive safety invariant I , e.g., the one in Equation 2, every
action can be abstracted to an arbitrary step between two
states satisfying the invariant (i.e., an action defined by ρ = I

and τ = I ∧ I ′, where I ′ uses primed variables to represent
the end state of a transition), which commutes with itself.

This abstraction is of course not useful, since our goal is to
avoid reasoning about this invariant in the first place.

We abstract Collect to CollectAbs given in Figure 1-④,
which strengthens the gate (represented as assertion) from
ρCollect = true to ρCollectAbs = ∀j . Broadcast(j) < Ω ∧

|CH[i]| ≥ n. This assertion represents a condition which
holds in the schedule defining Main', i.e., there are no con-
current Broadcast’s when a Collect action is spawned and
the channel accessed by the Collect already contains n
messages. This makes CollectAbs non-blocking and a left
mover. Thus IS is applicable and we show how CollectAbs

is used in the induction step.
Assume that some prefix of Collect’s from 1 to l are

already eliminated, and Collect(l + 1) should be eliminated
next (as indicated by the choice function). This is where
the supplied abstraction comes in; instead of Collect(l + 1)
we perform the induction step with CollectAbs(l + 1). In
particular, this means that we need to show that after the
transition of Inv it holds that Ω contains no Broadcast’s
and |CH[l+1]| ≥ n. Observe that this is an entirely sequential
verification condition, which holds because all Broadcast’s
happen before the Collect’s in Inv. There are two important
points to note about abstractions supplied to IS. First, these
abstractions are merely proof artifacts used during IS. They
are neither introduced into the program before nor left in
the program after IS. Second, an abstraction is always only
used for the single PA selected by the choice function. In
particular, in Inv (Figure 1-⑤), CollectAbs is neither used
for the already sequentialized Collect’s (line 46) nor for the
remaining PAs after l + 1 (line 48). While in this example the
gate of CollectAbs also holds there, this is not the case in
general (see Section 4). Thus abstraction during IS is more
powerful than abstraction before applying IS.
Finally, similar to a sequential loop invariant, which al-

lows us to fast-forward through all iterations of a loop, the
invariant action in IS allows us to fast-forward through all
eliminations of PAs. For Inv (Figure 1-⑤) this means that
we want to fast-forward to the point where all Broadcast’s
and Collect’s have been eliminated. This is the case when
k = l = n, and thus the result obtained by IS is the atomic
action Main' in Figure 1-③. The formal guarantee of IS is
that Main (Figure 1-②) refines Main' (Figure 1-③). Hence,
we can replace reasoning about Main with reasoning about
Main'. This action captures exactly how we imagined the
broadcast consensus protocol to execute sequentially, and IS
guarantees that this is a sound summary of all concurrent
executions. Now we can prove property (1) using simple se-
quential reasoning, i.e., using sequential loop invariants for
a particular execution order, as opposed to the complicated
flat inductive invariant (2). Note also that the proof artifacts
required to apply IS, i.e., the invariant action Inv and the
abstraction CollectAbs, were themselves devised from this
particular execution order only.
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3 Preliminaries

In this section we provide the necessary definitions to for-
malize IS in the next section.

Variables and stores. LetV be a set of variables partitioned
into global variables VG and local variables VL . A store is a
mapping σ : V → D that assigns a value from a domain D

to every variable. Similarly, д : VG → D is a global store and
ℓ : VL → D is a local store. Let д·ℓ denote the combination
of д and ℓ into a store.

Actions and programs. LetA be a set of action names (usu-
ally denoted by uppercase letters like A in this paper). A
pending async (PA) is a pair (ℓ,A) of a local store ℓ and an
action name A (ℓ holds parameter values for A). A gated

atomic action, or action for short, is a pair (ρ,τ ), where the
gate ρ is a set of stores and the transition relation τ is a set of
transitions (σ ,д,Ω) where σ is a (combined global and local)
store, д is a global store, and Ω is a finite multiset of pending
asyncs. A program is a finite mapping from action names to
actions. Every program P must contain the dedicated action
name Main, i.e., Main ∈ dom(P), and every action name that
appears in P must be mapped to an action. For a set of action
names E and a transition t = (σ ,д,Ω)we define PAE(t) to be
the set of PAs to E in Ω, i.e., PAE(t) = {(ℓ,A) ∈ Ω | A ∈ E}.
To simplify the notation we will identify a PA (ℓ,A) with
the singleton multiset {(ℓ,A)}, and thus write (ℓ,A) ⊎ Ω

for adding (ℓ,A) to Ω. We write P[A 7→ a] to denote the
program P ′ that is equal to P except that P ′(A) = a.

Executions. A configuration is a pair (д,Ω) of a global store
д and a finite multiset of pending asyncs Ω,1 or a unique

failure configuration  . We define the transition relation
P
−→

(omitting P when it is understood from the context) as

д·ℓ ∈ ρ (д·ℓ,д′,Ω′) ∈ τ

(д, (ℓ,A) ⊎ Ω) −→ (д′,Ω ⊎ Ω
′)

д·ℓ < ρ

(д, (ℓ,A) ⊎ Ω) −→  

whereP(A) = (ρ,τ ). In a configuration (д,Ω), any PA (ℓ,A) ∈

Ω can be scheduled to execute next; if the gate of A does not
hold (i.e., д·ℓ < ρ) then the program łfailsž, otherwise a tran-
sition (д·ℓ,д′,Ω′) ∈ τ atomically updates the global store to
д′ and creates new PAs Ω′ (that are added to Ω). Underlining
optionally denotes the PA that is executed in a transition. An
execution π is a sequence of configurations c0 −→ c1 −→ · · · .
We call an execution initialized if it starts in a configuration
(д, (ℓ, Main)) with a single PA to Main, terminating if it ends
in a configuration (д,�) with no PAs, and failing if it ends
in the failure configuration  .

Refinement. We define the notion of refinement between
both actions and programs [23]. Let ◦ denote the relation
composition operator (sets are unary relations). In particular,
ρ ◦ τ = {(σ ,д,Ω) ∈ τ | σ ∈ ρ} denotes the subset of
transitions in τ that start from a store σ ∈ ρ.

1In our formalization we use multisets of PAs both łstaticallyž in the defini-

tion of actions, and łdynamicallyž in configurations.

Definition 3.1. An action a1 = (ρ1,τ1) refines an action
a2 = (ρ2,τ2), denoted a1 ≼ a2, if (1) ρ2 ⊆ ρ1 and (2) ρ2 ◦ τ1 ⊆
τ2. We also say that a2 abstracts a1.

The first condition states that a2 has to preserve the fail-
ures of a1. The second condition states that a2 has to preserve
the transitions of a1 for initial stores from which a2 cannot
fail. Thus, a2 can fail more often than a1. For programs we
are interested in the preservation of failing and terminat-
ing behaviors of initialized executions. Let Good(P) be the
set of initial stores from which P cannot fail, and Trans(P)

the relation between initial and final stores of terminating
executions:

Good(P) =
{

д·ℓ | ¬
(

д, (ℓ, Main)
) P
−→∗  

}

;

Trans(P) =
{

(д·ℓ,д′) |
(

д, (ℓ, Main)
) P
−→∗ (д′,�)

}

.

Definition 3.2. A program P1 refines a program P2, de-
noted P1 ≼ P2, if (1) Good(P2) ⊆ Good(P1) and
(2) Good(P2) ◦ Trans(P1) ⊆ Trans(P2). We also say that P2

abstracts P1.

Intuitively, this notion of refinement establishes a relation-
ship between the summaries (input-output relations) of P1

and P2. If the programs contain no assertions (i.e., Good(P1)

and Good(P2) contain all possible stores), it requires that the
summary of the łconcretež program P1 is included in the
summary of the łabstractž program P2. When assertions are
present, it requires that P2 fails more often (condition 1) and
that the summary of P1, restricted to initial states where P2

does not fail, is included in the summary of P2 (condition 2).
This is sound in the sense that if P2 does not fail, then (1)
P1 does not fail as well, and (2) any property of terminating
states of P2 is also valid for the terminating states of P1.

Proposition 3.3. If a ≼ a′, then P[A 7→ a] ≼ P[A 7→ a′].

Left movers. An action l = (ρl ,τl ) is a left mover w.r.t. an

action x = (ρx ,τx ) if
(1) the gate of l is forward-preserved by x , i.e., if ρl remains
true after executing x whenever it was true before,

д·ℓl ∈ ρl ∧ (д·ℓx ,д
′
,Ω) ∈ ρx ◦ τx =⇒ д′·ℓl ∈ ρl ;

(2) the gate of x is backward-preserved by l , i.e., if ρx is true
before executing l whenever it is true afterwards,

(д·ℓl ,д
′
,Ω) ∈ ρl ◦ τl ∧ д′·ℓx ∈ ρx =⇒ д·ℓx ∈ ρx ;

(3) l commutes to the left of x , i.e., if executing x before l
leads to a global store that is also possible when executing l
before x ,

д·ℓl ∈ ρl ∧ (д·ℓx , д̄,Ωx ) ∈ τx ◦ ρx ∧ (д̄·ℓl ,д
′
,Ωl ) ∈ τl

=⇒ ∃д̂. (д·ℓl , д̂,Ωl ) ∈ τl ∧ (д̂·ℓx ,д
′
,Ωx ) ∈ τx ;

(4) l is non-blocking, i.e., if it contains a transition (σ ,д,Ω) ∈

τl from any store σ satisfying the gate ρl .
Furthermore, l is a left mover w.r.t. a program P, denoted

by LeftMover(l ,P), if it is a left mover w.r.t. every action in P.
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4 Inductive Sequentialization

In this section we present the inductive sequentialization (IS)

proof rule. The context of IS is a program P, an action name
M , and a set of action names E. The goal of IS is to eliminate
all PAs to E fromM , i.e., to summarizeM together with the
future effects of the PAs to E it creates. In particular, the IS
proof rule replacesM with a new action that contains no PAs
to E. Formally, P is transformed into a program P ′ that is
equal to P, except that the action nameM is re-mapped to a
new action (ρM ′,τM ′), i.e., P ′

= P[M 7→ (ρM ′,τM ′)]. Notice
that in general,M does not have to be the Main action of P.
The correctness requirement for IS is that P refines P ′,

which means that P ′ has to preserve both failing and ter-
minating behaviors of P (see Definition 3.2). In particular,
every terminating state of P must also be reachable by P ′:

(д, (ℓ, Main))
P
−→∗ (д′,�) =⇒ (д, (ℓ, Main))

P′

−−→∗ (д′,�).

The natural strategy to prove this property is to show that
every terminating P-execution π can be rewritten into a
terminating P ′-execution π ′ with the same final state, by
turning every transition of M in π into a transition of M ′

in π ′. We illustrate this process in Figure 2, where ① shows
the final part of a P-execution. First M executes from a
configuration with two other PAs to X and Y , which creates
two new PAs toA and B, and thenX ,B,Y ,A execute to reach
a terminating configuration. Suppose E = {A,B}, and thus
our goal is to obtain the execution in ⑥ which executesM ′

instead of M , which does not create PAs to A and B. We
do so by setting up an induction that stepwise eliminates A
and B from the execution in ①. The central artifact for this
induction is an invariant action I that has to be provided as
input to IS. Then the first step in②, constituting the base case
of the induction, is to execute I instead ofM , which requires
that every transition ofM is also a transition of I (or more
precisely, thatM refines I ). At this point the transition of I
denotes an łempty sequentializationž which we are going to
extend in the next steps to łpartial sequentializationsž, until
we obtain the łcomplete sequentializationžM ′. In doing so
we control the constructed sequentialization through a choice
function that determines for every partial sequentialization
a single PA to sequentialize next. Concretely, in ② we first
want to sequentialize A and then B, and thus the choice
function selects A in the transition of I (marked with a box
aroundA). We commuteA to the left of Y , B, and X to obtain
③, which requires that A is a left mover w.r.t. the actions in
P. Then the induction condition of IS guarantees that the
composition of I and A is possible as a single transition of
I (corresponding to an extended partial sequentialization),
and thus we obtain ④. Crucially, the transition of I in ③

only has to be inductive w.r.t A. Now we proceed similarly
with the PA to BÐcommute B to the left of X and absorb it
into IÐto obtain ⑤. However, it might be the case that B is
not an unconditional left mover. Therefore it is possible to

① X Y
M

X Y
A B

Y
A B

Y
A A

M X B Y A

② X Y
M

X Y

A B

Y
A B

Y
A A

I X B Y A

③ X Y
M

X Y

A B

X Y
B

Y
B Y

I A X B Y

④ X Y
M

X Y

B

Y
B Y

I X B∗ Y

⑤ X Y
M

X Y Y
I X Y

⑥ X Y
M

X Y Y
M ′ X Y

Figure 2. Illustration of the induction argument. Clouds
represent the set of PAs in a configuration (stores are not
shown) and the arrow labels indicate the actions that execute
in the transitions from one configuration to the next.

supply abstractions for actions in E to IS, like B∗ for B in
④. These abstractions can take into account the context in
which they are sequentialized, e.g., B∗ can rely on the fact
that A already executed. Finally, in ⑥ we replace I withM ′,
which is constructed from I by removing every transition
that has PAs to E, and thus obtain the desired P ′-execution.

We remark that in general, IS sequentializes not only the
PAs created directly byM , but also transitively created PAs.
This capability is essential to sequentialize unbounded se-
quences of PAs. Furthermore,M ′ can still have PAs to actions
disjoint from E. Then IS can be applied toM ′ again, and in
Section 5.3 we show that iterated application of IS can be
beneficial in practice.

Inductive sequentialization. The formal definition of the
IS proof rule is given in Figure 3. Besides the program P, ac-
tion nameM , and set of action names E which frame the rule,
an invariant action (ρI ,τI ), a choice function f , an abstraction

function α , and a well-founded order over configurations ≫
have to be provided. The choice function f selects from ev-
ery transition t of the invariant action that creates PAs to E

(i.e., PAE(t) , �) one of these PAs. The abstraction function

α is such that α(A) is an abstraction of P(A) for everyA ∈ E.
Note that we can set α(A) = P(A) for every A that should
not be abstracted. The induction argument outlined above is
enabled by three induction conditions. To start the induction
(cf. Figure 2, ①-②), condition (I1) requires the invariant ac-
tion to be an abstraction of the action we rewrite. To end the
induction (cf. Figure 2, ⑤-⑥), condition (I2) requires M to
be re-mapped to an action that abstracts the invariant action
with all transitions that contain PAs to E removed. To absorb
a PA into the invariant action (cf. Figure 2, ③-④), condition
(I3) is two-fold, corresponding to the failure and behavior
preservation requirement. First, after every transition t of
the invariant action, if A is the PA selected by the choice
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Given: P,M, E To invent: ρI ,τI , f ,α ,≫

P(M) = (ρM ,τM ) E ⊆ dom(P) WellFounded(≫)

dom(f ) = {t ∈ τI | PAE(t) , �} t ∈ dom(f ) =⇒ f (t) ∈ PAE(t)

dom(α) = E A ∈ E =⇒ P(A) ≼ α(A)

(I1) (ρM ,τM ) ≼ (ρI ,τI ) (I2) (ρI , {t ∈ τI | PAE(t) = �}) ≼ (ρM ′,τM ′)

(I3) t = (σ ,д, (ℓ,A) ⊎ Ω) ∈ ρI ◦ τI ∧ f (t) = (ℓ,A) ∧ α(A) = (ρA∗ ,τA∗ ) =⇒

д·ℓ ∈ ρA∗ ∧
(

(д·ℓ,д′,Ω′) ∈ τA∗ =⇒ (σ ,д′,Ω ⊎ Ω
′) ∈ τI

)

(LM) A ∈ E =⇒ LeftMover(α(A),P)

(CO) A ∈ E ∧ α(A) = (ρA∗ ,τA∗ ) ∧ д·ℓ ∈ ρA∗ =⇒

∃д′,Ω′. (д·ℓ,д′,Ω′) ∈ τA∗ ∧ (д, (ℓ,A) ⊎ Ω) ≫ (д′,Ω ⊎ Ω
′)

P ≼ P[M 7→ (ρM ′,τM ′)]

Figure 3. Inductive sequentialization (IS) proof rule.

function and A∗ the abstraction of A, then the gate of A∗ has

to be satisfied. In other words, any potential failure of A∗

has to be propagated into the gate of I . Second, when t is

composed with a transition of A∗, then the resulting com-

posite transition must be contained in I and thus possible

in a single step. To commute the actions in E to the appro-

priate position in the sequentialization (cf. Figure 2, ②-③),

the left-mover condition (LM) requires that every abstracted

action α(A) is a left mover w.r.t. the original actions in the

program P. Thus, abstracted actions do not have to be left

movers w.r.t. each other, which is evident in Figure 2 where

at most one abstraction at a time is part of the execution.

Finally, the cooperation condition (CO) strengthens the stan-

dard non-blocking conditions of left movers. It states that

is must be possible to execute every abstracted action such

that the configuration decreases in some well-founded or-

der ≫. (Recall that ≫ is well-founded, if there is no infinite

sequence c0, c1, c2, . . . of configurations such that ci ≫ ci+1
for every n ∈ N.) This ensures that it is always possible for

the PA elimination process to eventually finish, instead of

indefinitely introducing new PAs to be eliminated. While the

cooperation condition might seem exotic, its sole purpose is

the prevention of unsound IS on pathological corner cases,

and the condition is easy to satisfy in practice (see below).

Example 4.1. Recall the broadcast consensus protocol from

Figure 1. We formally apply IS to transform Main to Main'

by eliminating all PAs to Broadcast and Collect. Thus we

setM = Main, E = {Broadcast, Collect},M ′
= Main', and

I = Inv. Recall that Inv represents all partial sequentializa-

tions where Broadcast’s execute in the fixed order from 1
to n, followed by the Collect’s executing in the fixed or-
der from 1 to n. Thus (I1) Main is summarized by Inv (for
k = l = 0) and (I2) Main' summarizes the only execution of
Inv without remaining PAs (for k = l = n). We define the
choice function f such that it either selects the Broadcast
PA with the smallest parameter if one exists, or otherwise
the Collect PA with the smallest parameter. Broadcast is a

left mover w.r.t. {Main, Broadcast, Collect} and does not
need to be abstracted. However, Collect is not a left mover
because it does not commute with Broadcast and it also
does not satisfy the non-blocking condition. Thus we supply
the abstraction α(Collect) = CollectAbs that strengthens
the gate to assert that there are no Broadcast’s left and
at least n messages to receive, which makes CollectAbs a
left mover. Now the induction condition (I3) requires us to
discharge the gate of CollectAbs in a sequential context
when we compose it with Inv. This is possible since Inv ex-
ecutes all Broadcast’s before any Collect. We set ≫ such
that c ≫ c ′ if and only if c has more PAs than c ′. Then ≫

is clearly well-founded because the number of PAs cannot
be negative, and the cooperation condition (CO) is satisfied
because the execution of Broadcast/Collect decreases the
number of PAs (since they do not create new PAs).

Cooperation is necessary. We illustrate the need for the
cooperation condition on the following program.

1 action Main: action Rec: action Fail:

2 async Rec async Rec assert false

3 async Fail

This program can fail in two steps by executing Main fol-
lowed by Fail. Suppose we want to apply IS withM = Main,
E = {Rec}, and I = Main, which satisfies all conditions ex-
cept cooperation. In particular, notice that Fail is not in E

and thus the induction condition does not apply to it. But
then M ′ is constructed from I by removing all transitions
from Main that have PAs to Rec, which means all transitions.
Thus, the transition relation of M ′ is empty, i.e., τM ′ = �

(which we can also represent as assume false). Then re-
placing M with M ′ would result in a program that cannot
fail, which is unsound according to the definition of refine-
ment. The cooperation condition prevents the application of
IS because the execution of Rec in any configuration results
in exactly the same configuration, and thus it is impossible
to decrease in any well-founded order.
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Checking cooperation is easy. The cooperation condition
in Figure 3 is global in the sense that it requires a decrease
(д, (ℓ,A) ⊎ Ω) ≫ (д′,Ω ⊎ Ω

′) for any possible Ω. This is
the most general condition needed in our soundness proof,
but in practice we did not find it necessary for ≫ to depend
on Ω. Instead it is natural for ≫ to be monotonic, i.e., that
(д,Ω) ≫ (д′,Ω′) implies (д,Ω ⊎ Ω

′′) ≫ (д′,Ω′ ⊎ Ω
′′). Then

cooperation can be checked locally by showing (д, (ℓ,A)) ≫
(д′,Ω′). Furthermore, we found the following simple generic
pattern to apply to all of our examples in Section 5. Devise
a map д from configurations c to tuples (x1, . . . ,xn), such
that every xi is either the number of messages in a certain
channel, or the number of PAs of a certain action. Then de-
fine c ≫ c ′ if and only if д(c) > д(c ′), where > denotes the
lexicographic order of tuples of natural numbers. This con-
struction guarantees that ≫ is well-founded and monotonic,
and the cooperation condition is easy to check syntactically.

4.1 Soundness Proof

In this section, let P ≼ P ′ be derived by an application of IS.

Lemma 4.2. For every failing P-execution π starting with a

transition ofM there exists a failing P ′-execution π ′ starting

from the same configuration with a transition ofM , i.e.,

(д, (ℓ,M) ⊎ Ω)
P
−→∗  =⇒ (д, (ℓ,M) ⊎ Ω)

P′

−−→∗  .

Moreover, π ′ does not execute more PAs toM than π .

Proof. Let π be a failing P-execution that starts with a tran-
sition ofM :

π = (д, (ℓ,M) ⊎ Ω) −→ · · · −→  .

We show how to rewrite π into a failing P ′-execution

π ′
= (д, (ℓ,M) ⊎ Ω) −→ · · · −→  .

We (conceptually) replace the first transition ofM in π with
the invariant action I .

Case 1. д·ℓ < ρI . Then because ρM ′ ⊆ ρI we obtain

π ′
= (д, (ℓ,M) ⊎ Ω) −→  .

Case 2. д·ℓ ∈ ρI . Then because of (ρM ,τM ) ≼ (ρI ,τI )we must
have

π = (д, (ℓ,M) ⊎ Ω) −→ (д′,Ω ⊎ Ω
′) −→ · · · −→  .

Furthermore, some transition t ∈ τI can simulate the first
transition in π , and we denote π ′′ the remainder of π after
the first transition:

t = (д·ℓ,д′,Ω′) ∈ τI ; π ′′
= (д′,Ω ⊎ Ω

′) −→ · · · −→  .

We consider the lexicographically ordered measure on π ′′

comprising (1) the length of π ′′, ordered by ≥, and (2) the
final configuration in π ′′ before the failure, ordered by ≫.

Case 2.1. PAE(t) = �. Then t ∈ τM ′ and we obtain π ′
= π .

Case 2.2. PAE(t) , �. Let (ℓ′,A) ∈ Ω
′ be the PA selected

by the choice function, i.e., f (t) = (ℓ′,A). Let A∗ be the

abstraction of A. By the induction condition the gate of A∗,
which is stronger than the gate of A, holds at the beginning
of π ′′ (i.e., д·ℓ′ ∈ ρA∗ ) and because of forward preservation
it also holds in every later configuration of π ′′. In particular,
the execution of (ℓ′,A) cannot be the failing transition.

Case 2.2.1. (ℓ′,A) executes in π ′′. We turn this transition
of A into on of A∗, which can simulate the transition of A.
Because A∗ is a left mover, we stepwise commute it to the
left in π ′′ such that it becomes the first transition. Let t ′ be
the corresponding transition in A∗. (Note that some action
X that we move A∗ to the left of could now fail and thus π ′′

could be shortened.) By the induction condition t and t ′ can
be composed into a single transition t ′′ ∈ τI . We are in Case
2 with decreased measure.

Case 2.2.2. (ℓ′,A) does not execute in π ′′. We insert a transi-
tion of (ℓ′,A∗) into π ′′ right before the failure. Recall that the
gate of A∗ is satisfied, and by the cooperation condition we
can execute A∗ such that the final configuration decreases
according to ≫. Because of backward preservation, the orig-
inal failure is preserved after A∗. We proceed as in Case 2.2.1
to moveA∗ to the left and absorb it into I . Then we are again
in Case 2 with decreased measure.

The above rewriting process obviously does not introduce
new transitions ofM into π ′. □

Lemma 4.3. For every terminating P-execution π starting

with a transition ofM there exists a P ′-execution π ′ that starts

from the same configuration as π with a transition ofM and

either fails or ends in the same configuration as π , i.e.,

(д, (ℓ,M) ⊎ Ω)
P
−→∗ (д′,�) =⇒ (д, (ℓ,M) ⊎ Ω)

P′

−−→∗ c

where c ∈ { , (д′,�)}. Moreover, π ′ does not execute more PAs

toM than π .

Proof. We rewrite π into π ′ exactly the same way as in the
proof of Lemma 4.2. If no failure is introduced (which is
possible in Case 1 and Case 2.2.1) we are guaranteed to
preserve the final configuration of π (and never reach Case
2.2.2). Otherwise we obtain a failing π ′ from Lemma 4.2. □

Theorem 4.4. The IS proof rule in Figure 3 is sound.

Proof. By repeated application of Lemma 4.2 and Lemma 4.3
every P-execution π can be rewritten into a refinement-
preserving P ′-execution π ′. □

5 Evaluation

In this section, we report on our experience of using IS for
the verification of functional correctness of a diverse set of
example programs (see Table 1). We argue that IS is appli-
cable (to realistic programs), automatable (using sequential
verifiers), and user-friendly (by appealing to sequential in-
tuition). Our tool and all examples are publicly available as
part of the Boogie project [1] and long-term archived [26].
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5.1 Implementation

We implemented IS as an extension of CIVL [23], a verifica-
tion system for concurrent programs based on automated
and modular refinement reasoning. CIVL implements the
framework of layered concurrent programs [27] where the
input consists of a description of a sequence of (related) pro-
grams P1, · · · ,Pn and the verification goal is to establish
the chain of refinement P1 ≼ · · · ≼ Pn . The justification for
every refinement step between two subsequent programs
Pi ≼ Pi+1 is compiled into sequential verification conditions
of the Boogie verifier [3], which are then discharged auto-
matically by an SMT solver. We seamlessly integrated IS into
CIVL, such that every refinement step can now either be an
IS transformation or an existing CIVL transformation.
Our integration of IS into CIVL comprises roughly 2500

lines of C# code, addressing the following challenges. First,
we adapted the type checker to integrate IS into the language
of layered concurrent programs, which avoids extensive rep-
etition of program parts that do not change in most refine-
ment steps (observed as hindering, e.g., in [9]). Second, we
designed a representation of PAs as multisets in the general-
ized array theory [13] and extended the existing refinement
checker with the capability to summarize unboundedlymany
asynchronous calls as PAs. Third, the actual conditions of IS
(Figure 3) are compiled to sequential verification conditions
in Boogie. In particular, one sequential Boogie procedure
encodes each of the following checks: (1)M refines I , (2) I is
inductive w.r.t. the abstraction of a chosen PA, (3) I without
transitions that create PAs to E refinesM ′, and (4) A refines
its abstraction α(A) forA ∈ E. The left-mover conditions are
automatically discharged by the existing mover engine. Due
to this fine-grained decomposition, we can generate targeted
error messages for failed checks that are local to at most two
actions.

5.2 Verification Methodology

In this section we report on the verification methodology we
followed to verify our examples and specifically illustrate it
on our most significant example, Paxos.

Paxos. The Paxos [31] protocol establishes consensus among
a set of unreliable nodes in an asynchronous network with-
out a central coordinator. We consider a single-decree Paxos
variant that establishes consensus on a single value. Concep-
tually, Paxos operates in a sequence of (increasingly num-
bered) rounds, where each round is associated to a proposer
node. The proposers communicate with a set of acceptor
nodes to try to either decide on a newly proposed value or to
learn about a previously decided value. Since the proposers
operate concurrently on different rounds, Paxos resolves
conflicts using a mechanism that requires proposers to col-
lect in two subsequent phases łenoughž responses (called
quorum) from acceptors, while acceptors stop working on
a round when they hear about a higher round. Thus every

1 var acceptorState: Node -> AcceptorState

2 var decision: Round -> Option<Value>

3 var joinChannel: Round -> Bag<JoinResponse>

4 var voteChannel: Round -> Bag<VoteResponse>

5 proc Paxos() proc Conclude(r: Round, v: Value)

6 proc StartRound(r: Round) proc Join(r: Round, n: Node)

7 proc Propose(r: Round) proc Vote(r: Round, n: Node, v: Value)

(a) Concrete implementation

8 datatype VoteInfo(value: Value, nodes: Set<Node>)

9 var joinedNodes: Round -> Set<Node>

10 var voteInfo: Round -> Option<VoteInfo>

11 var pendingAsyncs: Bag<PA>

12 action Propose(r: Round) returns (pending_async PAs: Bag<PA>):

13 var ns: Set<Node>, v: Value

14 assert Propose(r) ∈ pendingAsyncs

15 assert voteInfo[r] = None()

16 if (*):

17 assume ns ⊆ joinedNodes[r] ∧ IsQuorum(ns)

18 ... // compute v from r, ns, and voteInfo
19 voteInfo[r] := Some(VoteInfo(v, �))
20 PAs := {Vote(r, n, v) | n: Node} ⊎ {Conclude(r, v)}

21 ...

(b) Atomic actions for applying inductive sequentialization

22 action ProposeAbs(r: Round) returns (pending_async PAs: Bag<PA>):

23 assert {StartRound(r') ∈ pendingAsyncs | r' ≤ r} = �
24 assert {Join(r', n') ∈ pendingAsyncs | r' ≤ r} = �
25 ... // same as Propose

26 action Paxos() seq Paxos' with PaxosInv

27 elim StartRound, StartRoundAbs elim Propose, ProposeAbs elim ...

28 ...

29 action Paxos'():

30 assert ∀ r. decision[r] = None()

31 havoc decision with ∀ r1, r2, v1, v2.

32 decision[r1] = Some(v1) ∧ decision[r2] = Some(v2) =⇒ v1 = v2

33 action PaxosInv() returns (pending_async PAs: Bag<PA>, choice c: PA)

34 ...

(c) Inductive sequentialization

Figure 4. Excerpts from our Paxos proof.

round can remain undecided (in general, consensus cannot
be guaranteed in an asynchronous network), but we want to
prove that two rounds never decide on conflicting values.

Implementation. Our examples are implemented as low-
level concurrent programs P1 that only use primitive atomic
actions, like reading or writing a single memory address,
and sending or receiving a single message. Figure 4(a) shows
the variable and procedure declarations of our Paxos im-
plementation. The procedures Propose and Conclude are
associated to the proposer role in the Paxos protocol, while
Join and Vote are associated to the acceptor role. A client
calls Paxos, which creates an arbitrary number of asynchro-
nous StartRound tasks. For each round, the corresponding
StartRound task creates one Join task per acceptor and one
Propose task. According to each acceptor’s current state
(in acceptorState), Join sends a JoinResponse message
to a channel in joinChannel. Propose executes a loop that
receives from this channel and aggregates the response mes-
sages. If a quorum is reached, it proposes a value by creating
one Vote task per acceptor and one Conclude task. Then, the
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Vote tasks send VoteResponsemessages that are aggregated
in a loop by Conclude. If a quorum is reached, Conclude up-
dates decision for the corresponding round from None()

to Some(v) where v is the decided value.

Atomic actions. IS operates on atomic actions, and thus
we first apply an existing CIVL transformation on P1 to
obtain suitable atomic actions that summarize the low-level
procedures, forming P2. Crucially, this step does not require
any concurrent invariants related to the correctness of the
protocol. However, the subsequently enabled application
of IS significantly simplifies the construction of the actual
proof of functional correctness. Furthermore, we note that
the structured proofs obtained by our methodology are not
onlyÐin our experienceÐsimpler to construct, but also more
modular and thus better suited for change than flat inductive
invariants. For example, changing low-level details in the
implementation only requires a revision of P1 ≼ P2, but
does not affect the rest of the proof.

For Paxos we also make use of CIVL’s capability to change
the state representation of the program. Concretely, we hide
the implementation variables acceptorState, joinChannel,
and voteChannel, and instead introduce the abstract vari-
ables joinedNodes and voteInfo shown in Figure 4(b). Also,
we introduce pendingAsyncs to hold the current set of pend-
ing asyncs. As an example, Figure 4(b) shows the action
summary of Propose. Instead of a loop that aggregates mes-
sages from a channel, it atomically initializes voteInfo[r]
to VoteInfo(v,�) if there is a quorum in joinedNodes[r],
where v is the proposed value and � the initially empty set
of acceptors that voted on it. Notice that the action Propose

has an additional specially-declared output variable PAs that
represents the PAs created by the action.

Inductive sequentialization. In our experience, the key to
apply IS is the intuition of idealized, sequential executions
of the program. The main creative task is the invention of
this sequentialization, while all required proof artifacts are
derived from it. In particular, the invariant action I and the
choice function f are determined from partial sequential
executions,M ′ summarizes completed sequential executions,
and left-moving abstractions α can assert to only execute in
the sequential context.
The sequentialization idea for Paxos is to execute one

round at a time (in increasing order), and within each round
execute actions in a fixed order. In particular, abbreviating ac-
tion names with their first letter and denoting round bound-
aries by a vertical bar, the sequentialization looks as follows:

S(1) J(1,1) J(1,2) P(1) V(1,1,_) V(1,2,_) C(1,_)
�

� S(2) J(2,1) . . .

To preserve all original behaviors of the protocol, we ob-
served that the effect of rounds being blocked from reaching
a decision due to overlapping proposals or out-of-order mes-
sage delivery is equivalent to both acceptors and proposers
nondeterministically dropping incoming messages. For ex-
ample, notice that the state update in Propose is guarded by a

nondeterministic conditional on line 16 (which is not present
in the low-level implementation P1 but introduced in P2).
Our goal is to apply IS to transform Paxos to Paxos' in

Figure 4(c). Paxos' is a straight-forward high-level specifica-
tion of Paxos, stating that the protocol consistently updates
decision, i.e., no two rounds decide on conflicting values. A
client could be provided with an API to query decision and
would then use Paxos' to reason about its own consistency.
The application of IS is declared on action Paxos (line 26),
which prescribes the use of invariant action PaxosInv to si-
multaneously eliminate all other actions using the left-mover
abstractions given in the elim clauses (line 27). For example,
ProposeAbs in Figure 4(c) strengthens the gate of Propose
with the information that, in the sequentialization, only Join
and StartRound actions with higher round numbers can still
be pending. All our abstractions are of this simple kind. The
choice function is specified by the programmer using a spe-
cial output variable c of PaxosInv, see line 33.

Our invariant action PaxosInv consists of four parts:

1. Sequentialization: Rounds execute one after another,
and within rounds there is a fixed order of phases.

2. Quorum before decision: If there was a decision for
value v , then there must have been a proposal and a
quorum of nodes that voted for v (in the same round).

3. Voting after decision: If there was a decision in round r1
for value v1 and some higher round r2 votes on value
v2, then v2 = v1.

4. Safety: If two rounds reach a decision, then it is on the
same value.

Property 1 encodes the sequentialization order and lets us
discharge the gates of our left-mover abstractions. Properties
2/3/4 capture the core mechanism of the protocol and are
quite easy to state.

Invariant complexity.We demonstrate the significant sim-
plifications afforded by IS in terms of invariant complexity
by comparing against the baseline of standard łasynchrony-
awarež inductive invariants (over the original asynchronous
program). In particular, we compare to the well-documented
Ivy invariants given in [39], but stress that these invari-
ants are representative for other systems like [9, 22, 32, 47].
While these works have excellent contributions elsewhere,
the methodology to deal with the protocol complexity boils
down to the above baseline. The only other approaches we
know of that focus on improving this particular aspect are
[2, 12, 28, 46], but they do not apply to our example programs
(see Section 6).

Properties 2/3/4 above correspond roughly to formulas (4)-
(7) in [39]. However, the Ivy invariant requires five additional
conjuncts (8)-(12), which capture more complicated depen-
dencies of overlapping rounds and are much harder to invent.
Due to sequentialization, we do not need any analogue of
these in our invariant.

237



PLDI ’20, June 15ś20, 2020, London, UK Bernhard Kragl, Constantin Enea, Thomas A. Henzinger, Suha Orhun Mutluergil, and Shaz Qadeer

Table 1. Examples verified with IS.

Example #IS
#LOC
Total

#LOC
IS

#LOC
Impl

Time
sec

Broadcast consensus 2 396 108 121 1.0

Ping-Pong 1 281 91 106 0.9

Producer-Consumer 1 225 65 93 0.9

N-Buyer 4 681 251 256 2.6

Chang-Roberts 2 377 117 135 1.1

Two-phase commit 4 553 181 222 1.4

Paxos 1 1168 534 302 4.2

5.3 Other Case Studies

We demonstrate the broad applicability of IS by applying it
on the examples listed in Table 1. These examples cover a
wide variety of characteristics of concurrent programs, in-
cluding modes of concurrency (tightly synchronized, mostly
independent, coordination-focused, phase-oriented, long-
running), communication topologies (complete, star, ring,
pipeline), channel types (bags, queues), and specifications
(consensus, unique leader, assertions). We avoided any hid-
den simplifications in the communication between processes
(e.g., arranging broadcast-receive communication with a set
of nodes sequentially instead of concurrently), and included
realistic performance optimizations which generally compli-
cate verification.
Column #IS reports the number of IS applications. For

some programs we preferred the repeated application of
IS, although the proof could be accomplished by a single
application. This is because an action that is eliminated in
one IS application disappears from the pool of actions w.r.t.
which left-moverness has to be established in a subsequent
IS application. For example, as an alternative to the one-shot
proof of the broadcast consensus protocol in Figure 1 we
performed a proof that first eliminates Broadcast in one
IS application, and then Collect in a second IS application.
Then the abstraction CollectAbs in Figure 1-④ does not
need the gate on line 33, because CollectAbs does not have
to commute to the left of Broadcast.

The #LOC columns report numbers of CIVL lines of code.
CIVL, as Boogie, is an intermediate verification language not
optimized for conciseness. Our files contain a lot of boiler-
plate code that would be part of a library for any frontend
language. Concretely, this includes declarations of builtin
SMT types, type declarations for pending asyncs, theory
axioms (e.g., for sets), primitive atomic actions (e.g., send/re-
ceive), etc. Thus, besides (1) the total lines we also report
(2) the lines related to IS steps, and (3) the lines related to
the implementation P1 and existing CIVL step P1 ≼ P2.
The last column reports the total verification time. Our

tool is fast and thus suitable for interactive development.
However, we acknowledge observing run-time fluctuations
caused by small (semantically irrelevant)modifications, likely

due to heuristics for quantifier reasoning. Improving the ro-
bustness of checkers for complex verification conditions is
an important avenue for future work.
We finally provide a brief description of the remaining

examples besides broadcast consensus and Paxos.
Ping-Pong. In this example a Ping process sends increas-
ing numbers to a Pong process, expecting the number to
be acknowledged back. Our sequentialization makes the al-
ternation of the Ping and Pong process explicit. We verify
assertions in the program, which state that the Pong pro-
cesses receives increasing numbers, and the Ping process
receives correct acknowledgments.
Producer-Consumer. This is a variation of the Ping-Pong
example, where a producer enqueues increasing numbers
into a shared queue, and a consumer dequeues numbers from
the queue and verifies that they are indeed increasing. The
Producer-Consumer example has more concurrent execu-
tions than the Ping-Pong example, because the producer can
be arbitrarily faster than the consumer, and thus the queue
can grow arbitrarily big. However, IS reduces the program
to a sequentialization where the producer and consumer
alternate, and thus the queue contains at most one element.
N-Buyer. In this example n buyer processes coordinate the
purchase of an item from a seller. That is, one buyer re-
quests a quote for the item from the seller, then the buyers
coordinate their individual contribution, and finally if the
contributions are enough to buy the item, and order is placed.
This example was adapted from [8] and is representative for
the coordination protocols targeted by session types. We
added and verified a functional correctness specification that
states that if a final order is placed then the sum of contribu-
tions promised by the buyers actually adds up to the price
of the ordered item.
Chang-Roberts. This is a leader election protocol in a ring
topology [10]. Each node starts by sending its own (unique)
ID to its neighbor in the ring, and then forwards incoming
messages with IDs greater than its own. When a node re-
ceives its own ID, it declares itself as leader. We prove that
there can be at most one leader. Our sequentialization fol-
lows from the intuition that only the node with the highest
ID, saym, can become a leader, and for that its ID has to tra-
verse the ring once. We sequentialize the program such that
each node runs to completion, starting with the neighbor of
m, then the neighbor of the neighbor ofm, and so on, and
finallym.
Two-phase commit (2PC). 2PC is a protocol for collectively
deciding on committing or aborting a transaction. The proto-
col consists of a coordinator and n participants, and proceeds
in two phases. During the first phase, the coordinator sends
vote requests to all the participants and collects their votes,
which can indicate to either commit or abort the transaction.
If all of the participants have voted for committing the trans-
action, the coordinator initiates the second phase by sending
commit messages to all participants. Otherwise, it sends an
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abort message. When the participants receive the decision
message from the coordinator, they finalize the transaction.
We consider an optimized and realistic implementation

of the 2PC protocol. First, in both phases, the coordinator
broadcasts a message and then waits to receive responses.
Second, the coordinator can send łearly abortž messages.
While receiving votes, it can terminate the first phase and
abort the transaction as soon as it receives a negative vote,
without waiting for the remaining votes. Thus some of the
participants might receive a decision message even before
seeing a request. Therefore, the last optimization is that
the participants can process request and decision messages
concurrently, in contrast to processing the decision message
sequentially after the request message.
We verified that all participants consistently commit or

abort a transaction, and that commit only happens if all
participants voted for commit. We established a sequential
reduction of 2PC using 4 applications of IS (each IS appli-
cation enlarging the sequentialized prefix until removing
asynchrony altogether). The sequential reduction follows
the natural flow of the protocol: broadcasting vote request
messages, followed by vote responses from a nondeterminis-
tic number of participants, followed by the broadcast of the
decision message, and the finalization of the transaction.

6 Related Work

We review works concerning the design of proof systems for
reasoning about concurrent or distributed systems. We focus
first on proof systems that include some form of reduction,
i.e., behavior-preserving transformations that reduce the
number of interleavings, which are closer to our work, and
subsequently discuss other related works.

Reduction. Lipton’s reduction theory [34] introduced the
concept of movers to define a program transformation that
creates atomic blocks of code. QED [15] expanded the scope
of Lipton’s theory by introducing iterated application of re-
duction and abstraction over gated atomic actions. CIVL [23]
builds upon the foundation of QED, adding invariants [24,
38], refinement layers [27], and pending asyncs [28]. Induc-
tive sequentialization builds upon this prior work, introduces
a new scheme for reasoning inductively over unbounded con-
current executions, and thus provides an alternative to the
classic approach of inductive invariants.
The work described above takes the general approach of

reasoning about concurrent programs via simplifying pro-
gram transformations. Recent research projects have advo-
cated the need to incorporate an increasing set of sound
program transformations. CSPEC [9] takes an approach sim-
ilar to CIVL but mechanizes all metatheory within the Coq
theorem prover [45] for flexibility and sound extensibility.
Armada [35] also has flexible and mechanized metatheory

whose usefulness is demonstrated by implementing a vari-
ety of program transformations, including those catering to
fine-grained concurrency and weak memory models.
Movers have also been used to define an equivalence-

preserving transformation that eliminates buffers inmessage-
passing programs [2, 46]. These works define a restricted
class of programs and prove that reasoning about the set of
rendezvous executions of these programs, where messages
are delivered instantaneously, is complete, i.e., any other
execution is equivalent to a rendezvous execution, up to
reordering of mover actions. Our example programs in Sec-
tion 5 fall outside this class, e.g., because of ring topology
(Chang-Roberts), optimizations (2PC, Paxos), or loop-carried
state (Ping-Pong). In general, removing message buffers does
not necessarily lead to a sequential program. Concurrency
can still be present due to the different orders in which mes-
sages can be sent or received by different processes. For
instance, von Gleissenthall et al. [46] consider a simpler vari-
ation of Paxos where the communication between a proposer
p and an acceptor a1 does not interleave with the commu-
nication between p and another acceptor a2. The reduction
to rendezvous communication, which remains a concurrent
program, still contains all the complexity due to acceptors
receiving messages from different rounds in an arbitrary
order (which is not present in our sequentialization).

In the context of asynchronous programs, Kragl et al. [28]
use left movers to derive atomic action summaries for proce-
dures with asynchronous calls, i.e., they define a behavior-
preserving transformation where asynchronous calls can be
assumed to be synchronous provided that their body is a
left mover. Inductive sequentialization solves the orthogo-
nal problem of eliminating an unbounded number of PAs
from atomic actions using induction. In particular, the work
in [28] does not apply to the examples presented in Section 5
(their versions of Ping-Pong and two-phase commit do not
model explicit communication through message-passing).
In the context of message-passing programs, Elrad and

Francez’s reduction theory [16] introduced the concept of
communication-closed layer, which is a sequence of actions
where every send action is paired with a corresponding re-
ceive action. They propose a program transformation that
reduces a given program to a sequence of communication-
closed layers. This simplifies reasoning since the lifetime
of a message is limited to a single layer. Damian et al. [12]
provides a concrete instantiation of this theory in the context
of fault-tolerant distributed protocols that relies on common
implementation idioms. While the result of this transforma-
tion is not a purely sequential program as in our case, it
does provide a significant reduction in the number of sched-
ules to reason about. Conceptually, our work is phrased in
a more generic setting that does not rely on the specifics
of the input program. The approach of Damian et al. [12]
requires low-level annotations about local variables and mes-
sages, and various syntactic constraints on executions. For
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instance, Damian et al. [12] cannot deal with Chang-Roberts
or our 2PC with "early-abort" (independently of the pro-
gramming model) because of syntactical constraints on the
executions (see Condition V of Definition 2 in that paper).
Chang-Roberts is not admitted because the messages do not
encode a notion of time and 2PC is not admitted because
the coordinator interleaves computation steps (taking a de-
cision) with receiving votes. They can also not deal with the
other examples (including our version of Paxos) because they
are written using asynchronous procedure calls (Damian
et al. [12] deals with protocols written as the composition
of a number of long-running processes executing sequen-
tial code). Concerning Paxos, Damian et al. [12] considered
several optimized variations which we believe are in the
reach of IS as well. Given the limited time, we chose to eval-
uate IS over a diverse set of communication patterns and
specifications instead of additional Paxos features.

Verification of distributed systems. There are several re-
cent papers on mechanized verification of distributed sys-
tems. IronFleet [22] embeds TLA-style state-machine mod-
eling [32] into the Dafny verifier [33] to refine high-level
distributed systems specifications into low-level executable
implementations. Ivy [40] organizes the search for an induc-
tive invariant as a collaborative process between automatic
verification attempts and user guided generalizations of coun-
terexamples to induction in a graphical model. They use a re-
strictedmodeling and specification language thatmakes their
verification conditions decidable. Padon et al. [39] presents
a methodology for (manually) instrumenting program code
which ensures that the verification conditions generated by
Ivy fall into the decidable effectively-propositional fragment
of first-order logic. Verdi [47] lets the programmer provide
a specification, implementation, and proof of a distributed
system under an idealized network model. Then the appli-
cation is automatically transformed into one that handles
faults via verified system transformers. The rely-guarantee
rule of Gavran et al. [19] and the ALS types of Kloos et al.
[25] target a weaker form of asynchrony, where a single task
queue atomically executes one task at a time. Unlike our
approach, all the above perform asynchronous reasoning
which significantly complicates the invariants. PSync [14]
uses a synchronous model of communication for the purpose
of program design and verification, shifting the complexity
of efficient asynchronous execution to a runtime system.
Concurrent separation logic (CSL) [36] was devised for

modular reasoning about multi-threaded shared-memory
programs, focusing on the verification of fine-grained con-
current data structures. CSL adequately addresses the prob-
lem of reasoning about low-level concurrency related to
dynamic memory allocation, but still suffers from the com-
plications of a monolithic approach to invariant discovery
for protocol-level concurrency. Recently, CSL has been ap-
plied to message-passing programs. The approach in [37]

uses CSL to link implementation steps to atomic actions, and
then relies on a model checker to explore the interleavings of
those atomic actions. The work in [43] addresses the compo-
sition of verified protocols using ideas from separation logic.
The actor services of [44] focus on compositional verification
of response properties of message-passing programs.

Sequentialization in boundedmodel checking. Reducing
concurrent program verification to sequential program veri-
fication has also been used in the context of bounded model
checking, e.g., [4, 6, 17, 29, 30, 42]. In this case, the reduction
encodes the control nondeterminism due to the interleaving
semantics into data nondeterminism, and assumes a certain
bound on interleavings, e.g., a bounded number of context
switches [41]. The resulting sequential program still exhibits
all the complexity due to interleavings, but is more amenable
to symbolic reasoning using SMT solvers.

7 Conclusion

We presented inductive sequentialization, a new induction-
based methodology for proving the correctness of an asyn-
chronous program. This methodology establishes sequen-
tial reductions, which capture all the behaviors of the origi-
nal program, up to reordering of commutative actions. The
proofs using inductive sequentialization are much simpler
than those relying on standard inductive invariants since
they sidestep the problem of reasoning about arbitrarily
many and arbitrarily long interleavings.

IS is a blend of induction, reduction and abstraction, which
derives its power from the tight combination of the three. Its
applicability is particularly enhanced in well-designed asyn-
chronous systems which favor short-living asynchronous
tasks in place of long-living tasks that reduce responsive-
ness, and where asynchrony is transparent in the sense that
it does not affect the logic of the application. This has been
demonstrated through the verification of a number of imple-
mentations of paradigmatic distributed protocols.
In the future we plan to further investigate the potential

of IS to simplify the construction of formal proofs of dis-
tributed systems in other application areas, e.g., Byzantine
fault tolerance, and blockchain protocols.
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